Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 107(2): 574-589, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35377412

RESUMO

Paternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether this metabolic dysfunction is associated with changes in placental vascular development and is fueled by endoplasmic reticulum (ER) stress-mediated changes in fetal hepatic development. We also determined whether paternal obesity indirectly affects the in utero environment by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow or high fat diet (60%kcal fat) for 8-10 weeks were time-mated with female mice to generate pregnancies and offspring. Glucose tolerance was evaluated in dams at mid-gestation (embryonic day (E) 14.5) and late gestation (E18.5). Hypoxia, angiogenesis, endocrine function, macronutrient transport, and ER stress markers were evaluated in E14.5 and E18.5 placentae and/or fetal livers. Maternal glucose tolerance was assessed at E14.5 and E18.5. Metabolic parameters were assessed in offspring at ~60 days of age. Paternal obesity did not alter maternal glucose tolerance but induced placental hypoxia and altered placental angiogenic markers, with the most pronounced effects in female placentae. Paternal obesity increased ER stress-related protein levels (ATF6 and PERK) in the fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Offspring of obese fathers were glucose intolerant and had impaired whole-body energy metabolism, with more pronounced effects in female offspring. Metabolic deficits in offspring due to paternal obesity may be mediated by sex-specific changes in placental vessel structure and integrity that contribute to placental hypoxia and may lead to poor fetal oxygenation and impairments in fetal metabolic signaling pathways in the liver.


Assuntos
Obesidade , Placenta , Animais , Dieta Hiperlipídica/efeitos adversos , Pai , Feminino , Glucose/metabolismo , Humanos , Hipóxia/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Placenta/metabolismo , Placentação , Gravidez
2.
Commun Biol ; 7(1): 1254, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363116

RESUMO

Congenital heart defects are leading causes of neonatal mortality and are often associated with placental abnormalities, but mechanisms linking placenta and heart development are poorly understood. Herein, we investigated a potential signaling network connecting the placenta and nascent heart in mice. We found that fetal hearts exposed to media conditioned by placental tissue or differentiated wild-type trophoblast stem (TS) cells, but not undifferentiated TS cells, showed increased heart rate and epicardial cell outgrowth. This effect was not observed when hearts were exposed to media from TS cells lacking OVO-Like 2, a transcription factor required for trophoblast differentiation and placental development. Trophoblasts released abundant extracellular vesicles into media, and these vesicles were sufficient to mediate cardio-promoting effects. Our findings provide a potential mechanism whereby the placenta communicates with the fetal heart to promote cardiac morphogenesis, and offers insight into the link between poor placentation and a higher incidence of heart defects.


Assuntos
Vesículas Extracelulares , Miócitos Cardíacos , Placenta , Animais , Vesículas Extracelulares/metabolismo , Feminino , Gravidez , Miócitos Cardíacos/metabolismo , Camundongos , Placenta/metabolismo , Coração Fetal/metabolismo , Coração Fetal/embriologia , Diferenciação Celular , Trofoblastos/metabolismo , Camundongos Endogâmicos C57BL
3.
Front Cell Dev Biol ; 11: 1079164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152295

RESUMO

Introduction: Uterine Natural Killer (NK) cells are the predominant immune cells within the decidua during early pregnancy. These cells are thought to regulate aspects of decidualization and placental development, but their functions remain poorly characterized, especially in species with deeply invading trophoblasts such as humans and rats. Interleukin-15 (IL-15) is a cytokine required for NK cell development and survival. IL-15 mutant (IL15Δ/Δ) rats lack NK cells and exhibit altered placental development with precocious trophoblast invasion. In this study, we profiled gene expression differences between wild-type and IL15Δ/Δ implantation sites to reveal candidate factors produced by uterine NK cells that may regulate placentation and trophoblast invasion. Methods: Clariom S gene expression profiling was performed using implantation sites collected from pregnant wild-type and IL15Δ/Δ rats on gestational day 9.5. Levels and localization of perforin and osteopontin in implantation sites from wild-type and IL15Δ/Δ rats were further analyzed. The effect of osteopontin on the invasive capacity of rat trophoblasts was evaluated using Matrigel-based Transwell assays. Results: There were 257 genes differentially expressed between wild-type and IL15Δ/Δ implantation sites on gestational day 9.5, including decreased expression of various NK cell markers in IL15Δ/Δ rats, as well as Spp1, which encodes osteopontin. In wild-type rats, osteopontin was present within the decidua basalis and adjacent to the primitive placenta, and osteopontin colocalized with the NK cell marker perforin. Osteopontin was also detectable in uterine glands. Conversely, in IL15Δ/Δ rats, osteopontin and perforin were not readily detectable in the decidua despite robust osteopontin levels in uterine glands. Neutralization of osteopontin in media conditioned by cells isolated from the decidua decreased invasion of rat trophoblasts, suggesting that reduced levels of osteopontin are unlikely to account for the precocious trophoblast invasion in IL15Δ/Δ rats. Conclusion: Osteopontin is expressed by NK cells at the maternal-fetal interface in rats and may contribute to modulation of trophoblast invasion.

4.
PLoS One ; 18(8): e0284972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549142

RESUMO

It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.


Assuntos
Adiposidade , Obesidade , Gravidez , Camundongos , Animais , Masculino , Feminino , Humanos , Adiposidade/fisiologia , Dieta Hiperlipídica/efeitos adversos , Íleo , Permeabilidade , Fenômenos Fisiológicos da Nutrição Materna
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA