RESUMO
Mutations to PKD1 and PKD2 are associated with autosomal dominant polycystic kidney disease (ADPKD). The absence of apparent PKD1/PKD2 linkage in five published European or North American families with ADPKD suggested a third locus, designated PKD3. Here we re-evaluated these families by updating clinical information, re-sampling where possible, and mutation screening for PKD1/PKD2. In the French-Canadian family, we identified PKD1: p.D3782_V3783insD, with misdiagnoses in two individuals and sample contamination explaining the lack of linkage. In the Portuguese family, PKD1: p.G3818A segregated with the disease in 10 individuals in three generations with likely misdiagnosis in one individual, sample contamination, and use of distant microsatellite markers explaining the linkage discrepancy. The mutation PKD2: c.213delC was found in the Bulgarian family, with linkage failure attributed to false positive diagnoses in two individuals. An affected son, but not the mother, in the Italian family had the nonsense mutation PKD1: p.R4228X, which appeared de novo in the son, with simple cysts probably explaining the mother's phenotype. No likely mutation was found in the Spanish family, but the phenotype was atypical with kidney atrophy in one case. Thus, re-analysis does not support the existence of a PKD3 in ADPKD. False positive diagnoses by ultrasound in all resolved families shows the value of mutation screening, but not linkage, to understand families with discrepant data.
Assuntos
Loci Gênicos , Mutação , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Adolescente , Adulto , Idoso , Canadá , Criança , Análise Mutacional de DNA , Erros de Diagnóstico , Europa (Continente) , Reações Falso-Positivas , Feminino , Ligação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Haplótipos , Hereditariedade , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Valor Preditivo dos Testes , Ultrassonografia , Adulto JovemRESUMO
Polycystic kidney diseases (PKD) are inherited disorders characterized by fluid-filled cysts primarily in the kidneys. We previously reported differences between the expression of Cux1, p21, and p27 in the cpk and Pkd1 null mouse models of PKD. Embryonic lethality of Pkd1 null mice limits its study to early stages of kidney development. Therefore, we examined mice with a collecting duct specific deletion in the Pkd1 gene. Cux1 was ectopically expressed in the cyst lining epithelial cells of newborn, P7 and P15 Pkd1(CD) mice. Cux1 expression correlated with cell proliferation in early stages of cystogenesis, however, as the disease progressed, fewer cyst lining cells showed increased cell proliferation. Rather, Cux1 expression in late stage cystogenesis was associated with increased apoptosis. Taken together, our results suggest that increased Cux1 expression associated with apoptosis is a common feature of late stage cyst progression in both the cpk and Pkd1(CD) mouse models of PKD.
Assuntos
Apoptose/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteínas de Homeodomínio/genética , Doenças Renais Císticas/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Canais de Cátion TRPP/genética , Animais , Animais Recém-Nascidos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Progressão da Doença , Regulação para Baixo , Ativação Enzimática/genética , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Túbulos Renais Coletores/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Canais de Cátion TRPP/metabolismo , Transfecção , Regulação para Cima/genéticaRESUMO
Polycystic kidney disease (PKD) is a life-threatening genetic disorder characterized by the presence of fluid-filled cysts primarily in the kidneys. PKD can be inherited as autosomal recessive (ARPKD) or autosomal dominant (ADPKD) traits. Mutations in either the PKD1 or PKD2 genes, which encode polycystin 1 and polycystin 2, are the underlying cause of ADPKD. Progressive cyst formation and renal enlargement lead to renal insufficiency in these patients, which need to be managed by lifelong dialysis or renal transplantation. While characteristic features of PKD are abnormalities in epithelial cell proliferation, fluid secretion, extracellular matrix and differentiation, the molecular mechanisms underlying these events are not understood. Here we review the progress that has been made in defining the function of the polycystins, and how disruption of these functions may be involved in cystogenesis.