Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(35): 8694-8699, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104388

RESUMO

As water availability becomes a growing challenge in various regions throughout the world, desalination and wastewater reclamation through technologies such as reverse osmosis (RO) are becoming more important. Nevertheless, many open questions remain regarding the internal structure of thin-film composite RO membranes. In this work, fully aromatic polyamide films that serve as the active layer of state-of-the-art water filtration membranes were investigated using high-angle annular dark-field scanning transmission electron microscopy tomography. Reconstructions of the 3D morphology reveal intricate aspects of the complex microstructure not visible from 2D projections. We find that internal voids of the active layer of compressed commercial membranes account for less than 0.2% of the total polymer volume, contrary to previously reported values that are two orders of magnitude higher. Measurements of the local variation in polyamide density from electron tomography reveal that the polymer density is highest at the permeable surface for the two membranes tested and establish the significance of surface area on RO membrane transport properties. The same type of analyses could provide explanations for different flux variations with surface area for other types of membranes where the density is distributed differently. Thus, 3D reconstructions and quantitative analyses will be crucial to characterize the complex morphology of polymeric membranes used in next-generation water-purification membranes.

2.
J Am Chem Soc ; 140(9): 3173-3176, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29432004

RESUMO

A range of academic and industrial fields exploit interfacial polymerization in producing fibers, capsules, and films. Although widely used, measurements of reaction kinetics remain challenging and rarely reported, due to film thinness and reaction rapidity. Here, polyamide film formation is studied using microfluidic interferometry, measuring monomer concentration profiles near the interface during the reaction. Our results reveal that the reaction is initially controlled by a reaction-diffusion boundary layer within the organic phase, which allows the first measurements of the rate constant for this system.

3.
Science ; 371(6524): 72-75, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33384374

RESUMO

Biological membranes can achieve remarkably high permeabilities, while maintaining ideal selectivities, by relying on well-defined internal nanoscale structures in the form of membrane proteins. Here, we apply such design strategies to desalination membranes. A series of polyamide desalination membranes-which were synthesized in an industrial-scale manufacturing line and varied in processing conditions but retained similar chemical compositions-show increasing water permeability and active layer thickness with constant sodium chloride selectivity. Transmission electron microscopy measurements enabled us to determine nanoscale three-dimensional polyamide density maps and predict water permeability with zero adjustable parameters. Density fluctuations are detrimental to water transport, which makes systematic control over nanoscale polyamide inhomogeneity a key route to maximizing water permeability without sacrificing salt selectivity in desalination membranes.

4.
ACS Macro Lett ; 7(8): 927-932, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650967

RESUMO

Characterization of the internal morphology of thin film composite membranes used in reverse osmosis (RO) is a prerequisite for understanding the connection between microstructure and water transport properties and is necessary for the design of membranes with improved performance. Here, we examine a series of fully aromatic polyamide active layers of RO membranes that vary in crosslinking using a combination of resonant soft X-ray scattering (RSoXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Analysis of RSoXS profiles reveals a correlation between membrane structure and crosslinking density. Through a combination of scattering contrast calculations, TEM, and AFM micrographs, we assign the dominant contribution to RSoXS data as either surface roughness or chemical heterogeneity, depending on the X-ray energy used. Altogether, our results demonstrate the utility of soft X-ray scattering to examine the microstructure of water filtration membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA