Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(42): e2321342121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39374395

RESUMO

Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δ13C) and oxygen (δ18O) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater. The carbon isotope values range from 72 ± 2‰ to 110 ± 3‰ Vienna Pee Dee Belemnite while the oxygen isotope values span from 59 ± 4‰ to 91 ± 4‰ Vienna Standard Mean Ocean Water (1 SE uncertainties). Notably, these values are isotopically heavy (13C- and 18O-enriched) relative to nearly every other Martian material. The extreme isotopic difference between the carbonates and other carbon- and oxygen-rich reservoirs on Mars cannot be reconciled by standard equilibrium carbonate-CO2 fractionation, thus requiring an alternative process during or prior to carbonate formation. This paper explores two processes capable of contributing to the isotopic enrichments: 1) evaporative-driven Rayleigh distillation and 2) kinetic isotope effects related to cryogenic precipitation. In isolation, each process cannot reproduce the observed carbonate isotope values; however, a combination of these processes represents the most likely source for the extreme isotopic enrichments.

2.
Phys Chem Chem Phys ; 25(29): 20042-20048, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462080

RESUMO

An approach to the luminance increase of the europium-based OLED is proposed through the formation of the mixed-ligand complex. The introduction of two diverse anionic ligands around one europium ion forming a mixed-ligand complex is confirmed by powder X-ray diffraction, 1H and 19F NMR spectroscopy, MALDI MS spectroscopy, and luminescence spectroscopy. A decrease in the symmetry of the coordination environment leads to a 50% reduction of the lifetime of the excited state. The obtained OLEDs based on mixed ligand europium complexes are significantly superior in luminance to OLEDs based on individual complexes.

3.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110601

RESUMO

Acid-base characteristics (acidity, pKa, and hydricity, ΔG°H- or kH-) of metal hydride complexes could be a helpful value for forecasting their activity in various catalytic reactions. Polarity of the M-H bond may change radically at the stage of formation of a non-covalent adduct with an acidic/basic partner. This stage is responsible for subsequent hydrogen ion (hydride or proton) transfer. Here, the reaction of tricarbonyl manganese hydrides mer,trans-[L2Mn(CO)3H] (1; L = P(OPh)3, 2; L = PPh3) and fac-[(L-L')Mn(CO)3H] (3, L-L' = Ph2PCH2PPh2 (dppm); 4, L-L' = Ph2PCH2-NHC) with organic bases and Lewis acid (B(C6F5)3) was explored by spectroscopic (IR, NMR) methods to find the conditions for the Mn-H bond repolarization. Complex 1, bearing phosphite ligands, features acidic properties (pKa 21.3) but can serve also as a hydride donor (ΔG≠298K = 19.8 kcal/mol). Complex 3 with pronounced hydride character can be deprotonated with KHMDS at the CH2-bridge position in THF and at the Mn-H position in MeCN. The kinetic hydricity of manganese complexes 1-4 increases in the order mer,trans-[(P(OPh)3)2Mn(CO)3H] (1) < mer,trans-[(PPh3)2Mn(CO)3H] (2) ≈ fac-[(dppm)Mn(CO)3H] (3) < fac-[(Ph2PCH2NHC)Mn(CO)3H] (4), corresponding to the gain of the phosphorus ligand electron-donor properties.

4.
Phys Chem Chem Phys ; 24(2): 1167-1173, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931208

RESUMO

A recently introduced concept of reduced paramagnetic shifts (RPS) in NMR spectroscopy is applied here to a series of paramagnetic complexes with different metal ions, such as iron(II), iron(III) and cobalt(II), in different coordination environments of N-donor ligands, including a unique trigonal-prismatic geometry that is behind some record single-molecule magnet behaviours. A simple, almost visual analysis of the chemical shifts as a function of temperature, which is at the core of this approach, allows for a correct signal assignment and evaluation of the anisotropy of the magnetic susceptibility, the key indicator of a good single molecule magnet, that often cannot be done using traditional techniques rooted in quantum chemistry and NMR spectroscopy. The proposed approach thus emerged as a powerful alternative in deciphering the NMR spectra of paramagnetic compounds for applications in data processing and storage, magnetic resonance imaging and structural biology.

5.
Inorg Chem ; 59(15): 10746-10755, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32672944

RESUMO

Herein, we combine for the first time SQUID magnetometry, cw-EPR, THz-EPR, and paramagnetic NMR spectroscopies to study the magnetic properties of a high-spin cobalt(II) heteroscorpionate complex. Complementary information provided by these methods allowed precise determination of the magnetic interaction parameters, thereby removing the ambiguity inherit to single-method studies. We systematically investigate the extent to which information about the magnetic interaction parameters can be deduced from reduced data sets. The detailed study revealed significant different magnetic properties in solid state and solution. To further exploit the information content of the solution NMR experimental results, we introduce the new concept of reduced paramagnetic shift. It allows for the determination of the magnetic axes and, subsequently, full NMR signal assignment. It is shown that even in complicated cases, in which common NMR analytics (integral intensities, relaxation factors, etc.) fail, it yields robust results.

6.
Inorg Chem ; 59(17): 11962-11975, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32806008

RESUMO

Two stereoisomers of pentacoordinate iridium(III) hydridochloride with triptycene-based PC(sp3)P pincer ligand (1,8-bis(diisopropylphosphino)triptycene), 1 and 2, differ by the orientation of hydride ligand relative to the bridgehead ring of triptycene. According to DFT/B3PW91/def2-TZVP calculations performed, an equatorial Cl ligand can relatively easily change its position in 1, whereas that is not the case in 2. Both complexes 1 and 2 readily bind the sixth ligand to protect the empty coordination site. Variable temperature spectroscopic (NMR, IR, and UV-visible) studies show the existence of two isomers of hexacoordinate complexes 1·MeCN, 2·MeCN, and 2·Py with acetonitrile or pyridine coordinated trans to hydride or trans to metalated C(sp3), whereas only the equatorial isomer is found for 1·Py. These complexes are stabilized by various intramolecular noncovalent C-H···Cl interactions that are affected by the rotation of isopropyls or pyridine. The substitution of MeCN by pyridine is slow yielding axial Py complexes as kinetic products and the equatorial Py complexes as thermodynamic products with faster reactions of 1·L. Ultimately, that explains the higher activity of 1 in the catalytic alkenes' isomerization observed for allylbenzene, 1-octene, and pent-4-enenitrile, which proceeds as an insertion/elimination sequence rather than through the allylic mechanism.

7.
Inorg Chem ; 59(9): 5845-5853, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31984742

RESUMO

Boron-cross-linked cobalt(II) pseudoclathrochelate was obtained by the template reaction of 2-acetylpyrazoloxime, phenylboronic acid, and a new DMF cobalt(II) solvato complex with a decachloro-closo-decaborate dianion. As confirmed by single-crystal X-ray diffraction, this complex crystallizes with two symmetry-independent cobalt(II) pseudoclathrochelate cations, one decachloro-closo-decaborate dianion, one benzene, one dichloromethane solvent molecule, and two molecules of DMF. The latter act as pseudocapping fragments to the monocapped tris-pyrazoloximate ligands by forming N-H···O hydrogen bonds with their pyrazole groups. The CoIIN6-coordination polyhedra adopt a nearly ideal TP geometry with distortion angles φ equal to 1.22(16) and 2.58(17)° for two symmetry-independent pseudoclathrochelate cations, both containing the encapsulated cobalt(II) ion in its high-spin state (Co-N 2.115(4)-2.198(3) Å). Magnetic properties of this complex were studied both by dc-magnetometry and by solution-state NMR spectroscopy to reveal a high magnetic anisotropy, thus suggesting a large magnetic susceptibility tensor anisotropy (25.8 × 10-32 m3 at 298 K) and a large negative zero-field splitting energy (-85 cm-1). The results of magnetometry studies in the ac magnetic field suggest a single molecule magnet behavior of this TP complex with an effective magnetization reversal barrier of approximately 130 cm-1. Its pseudocapping DMF molecules that form H-bonds with tris-pyrazoloximate fragments are easy to substitute by strong H-bond acceptors, such as chloride ions and di- and tetramethylureas, thus affecting the magnetic properties of a whole pseudomacrobicyclic paramagnetic system.

8.
Org Biomol Chem ; 18(4): 755-766, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912862

RESUMO

The design of small organic molecules with a predictable and desirable DNA-binding mechanism is a topical research task for biomedicine application. Herein, we demonstrate an attractive supramolecular strategy for controlling the non-covalent ligand-DNA interaction by binding with cucurbituril as a synthetic receptor. With a combination of UV/vis, CD and NMR experiments, we demonstrate that the bis-styryl dye with two suitable binding sites can involve double stranded DNA and cucurbituril in the formation of the supramolecular triad. The ternary assembly is formed as a result of the interaction of macrocyclic cucurbituril with one pyridinium fragment of the bis-styryl dye, while the second pyridinium fragment of the dye is effectively associated with DNA backbones, which leads to a change in the ligand-DNA binding mode from aggregation to a minor groove. This exciting outcome was supported by molecular docking studies that help to understand the molecular orientation of the supramolecular triad and elucidate the destruction of dye aggregates caused by cucurbituril. These studies provide valuable information on the mechanisms of DNA binding to small molecules and recognition processes in bioorganic supramolecular assemblies constructed from multiple non-covalent interactions.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Corantes/química , DNA/química , Imidazóis/química , Estirenos/química , Animais , Bovinos , Ligantes , Compostos Macrocíclicos/química , Simulação de Acoplamento Molecular
9.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859107

RESUMO

The coating formation technique for artificial knee ligaments was proposed, which provided tight fixation of ligaments of polyethylene terephthalate (PET) fibers as a result of the healing of the bone channel in the short-term period after implantation. The coating is a frame structure of single-walled carbon nanotubes (SWCNT) in a collagen matrix, which is formed by layer-by-layer solidification of an aqueous dispersion of SWCNT with collagen during spin coating and controlled irradiation with IR radiation. Quantum mechanical method SCC DFTB, with a self-consistent charge, was used. It is based on the density functional theory and the tight-binding approximation. The method established the optimal temperature and time for the formation of the equilibrium configurations of the SWCNT/collagen type II complexes to ensure maximum binding energies between the nanotube and the collagen. The highest binding energies were observed in complexes with SWCNT nanometer diameter in comparison with subnanometer SWCNT. The coating had a porous structure-pore size was 0.5-6 µm. The process of reducing the mass and volume of the coating with the initial biodegradation of collagen after contact with blood plasma was demonstrated. This is proved by exceeding the intensity of the SWCNT peaks G and D after contact with the blood serum in the Raman spectrum and by decreasing the intensity of the main collagen bands in the SWCNT/collagen complex frame coating. The number of pores and their size increased to 20 µm. The modification of the PET tape with the SWCNT/collagen coating allowed to increase its hydrophilicity by 1.7 times compared to the original PET fibers and by 1.3 times compared to the collagen coating. A reduced hemolysis level of the PET tape coated with SWCNT/collagen was achieved. The SWCNT/collagen coating provided 2.2 times less hemolysis than an uncoated PET implant. MicroCT showed the effective formation of new bone and dense connective tissue around the implant. A decrease in channel diameter from 2.5 to 1.7 mm was detected at three and, especially, six months after implantation of a PET tape with SWCNT/collagen coating. MicroCT allowed us to identify areas for histological sections, which demonstrated the favorable interaction of the PET tape with the surrounding tissues. In the case of using the PET tape coated with SWCNT/collagen, more active growth of connective tissue with mature collagen fibers in the area of implantation was observed than in the case of only collagen coating. The stimulating effect of SWCNT/collagen on the formation of bone trabeculae around and inside the PET tape was evident in three and six months after implantation. Thus, a PET tape with SWCNT/collagen coating has osteoconductivity as well as a high level of hydrophilicity and hemocompatibility.


Assuntos
Osso Esponjoso/efeitos dos fármacos , Colágeno/farmacologia , Ligamentos/transplante , Polietilenotereftalatos/química , Animais , Bioprótese , Regeneração Óssea/efeitos dos fármacos , Osso Esponjoso/cirurgia , Colágeno/química , Nanotubos de Carbono/química , Tamanho da Partícula , Teoria Quântica , Coelhos , Cicatrização/efeitos dos fármacos
10.
Chemphyschem ; 20(8): 1001-1005, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30897255

RESUMO

Herein, we report a new trigonal prismatic cobalt(II) complex that behaves as a single molecule magnet. The obtained zero-field splitting, which is also directly accessed by THz-EPR spectroscopy (-102.5 cm-1 ), results in a large magnetization reversal barrier U of 205 cm-1 . Its effective value, however, is much lower (101 cm-1 ), even though there is practically no contribution from quantum tunneling to magnetization relaxation.

11.
Inorg Chem ; 58(16): 11051-11065, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31369247

RESUMO

Chiral copper(II) and cobalt(III) complexes (1-5 and 6, respectively) derived from Schiff bases of (S)-2-(aminomethyl)pyrrolidine and salicylaldehyde derivatives were employed in a mechanistic study of the Henry reaction-type condensation of nitromethane and o-nitrobenzaldehyde in CH2Cl2 (CD2Cl2), containing different amounts of water. The reaction kinetics was monitored by 1H and 13C NMR. The addition of water had a different influence on the activity of the two types of complexes, ranging from a crucial positive effect in the case of the copper(II) complex 2 to insignificant in the case of the stereochemically inert cobalt(III) complex 6. No experimental support was found by 1H NMR studies for the classical Lewis acid complexation of the carbonyl group of the aldehyde by the central copper(II) ion, and, moreover, density functional theory (DFT) calculations support the absence of such coordination. On the other hand, a very significant complexation was found for water, and it was supported by DFT calculations. In fact, we suggest that it is the Brønsted acidity of the water molecule coordinated to the metal ion that triggers the aldehyde activation. The rate-limiting step of the reaction was the removal of an α-proton from the nitromethane molecule, as supported by the observed kinetic isotope effect equaling 6.3 in the case of the copper complex 2. It was found by high-resolution mass spectrometry with electrospray ionization that the copper(II) complex 2 existed in CH2Cl2 in a dimeric form. The reaction had a second-order dependence on the catalyst concentration, which implicated two dimeric forms of the copper(II) complex 2 in the rate-limiting step. Furthermore, DFT calculations help to generate a plausible structure of the stereodetermining transition step of the condensation.

12.
Phys Chem Chem Phys ; 21(16): 8201-8204, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30950488

RESUMO

Here we report a combined use of THz-EPR and NMR spectroscopy for obtaining a detailed electronic structure of a long-known high-spin complex, cobalt(ii) bis[tris(pyrazolyl)borate]. The lowest inter-Kramers transition was directly measured by THz-EPR spectroscopy, while the energies of higher Kramers doublets were estimated by a recently proposed NMR-based approach. Together, they produced magnetic parameters for a full model that explicitly includes spin-orbit coupling. This approach is applicable to all transition metal ions for which the spin-orbit coupling cannot be treated perturbatively.

13.
Inorg Chem ; 57(3): 1656-1664, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350026

RESUMO

The interaction of trans-W(N2)2(dppe)2 (1; dppe = 1,2-bis(diphenylphosphino)ethane) with relatively weak acids (p-nitrophenol, fluorinated alcohols, CF3COOH) was studied by means of variable temperature IR and NMR spectroscopy and complemented by DFT/B3PW91-D3 calculations. The results show, for the first time, the formation of a hydrogen bond to the coordinated dinitrogen, W-N≡N···H-O, that is preferred over H-bonding to the metal atom, W···H-O, despite the higher proton affinity of the latter. Protonation of the core metal-the undesirable side step in the conversion of N2 to NH3-can be avoided by using weaker and, more importantly, bulkier acids.

14.
Inorg Chem ; 56(24): 14759-14762, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29206025

RESUMO

Spin transitions in spin-crossover compounds are now routinely studied in the solid state by magnetometry; however, only a few methods exist for studies in solution. The currently used Evans method, which relies on NMR spectroscopy to measure the magnetic susceptibility, requires the availability of a very pure sample of the paramagnetic compound and its exact concentration. To overcome these limitations, we propose an alternative NMR-based technique for evaluating spin-state populations by only using the chemical shifts of a spin-crossover compound; those can be routinely obtained for a solution that contains unknown impurities and paramagnetic admixtures or is contaminated otherwise.

15.
Inorg Chem ; 56(12): 6943-6951, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28541691

RESUMO

High magnetic anisotropy is a key property of paramagnetic shift tags, which are mostly studied by NMR spectroscopy, and of single molecule magnets, for which magnetometry is usually used. We successfully employed both these methods in analyzing magnetic properties of a series of transition metal complexes, the so-called clathrochelates. A cobalt complex was found to be both a promising paramagnetic shift tag and a single molecule magnet because of it having large axial magnetic susceptibility tensor anisotropy at room temperature (22.5 × 10-32 m3 mol-1) and a high effective barrier to magnetization reversal (up to 70.5 cm-1). The origin of this large magnetic anisotropy is a negative value of zero-field splitting energy that reaches -86 cm-1 according to magnetometry and NMR measurements.

16.
J Am Chem Soc ; 137(31): 9792-5, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26199996

RESUMO

Single-molecule magnets (SMMs) with one transition-metal ion often rely on unusual geometry as a source of magnetically anisotropic ground state. Here we report a cobalt(II) cage complex with a trigonal prism geometry showing single ion magnet behavior with very high Orbach relaxation barrier of 152 cm(-1). This, to our knowledge, is the largest reported relaxation barrier for a cobalt-based mononuclear SMM. The trigonal prismatic coordination provided by the macrocyclic ligand gives intrinsically more stable molecular species than previously reported SMMs, thus making this type of cage complexes more amendable to possible functionalization that will boost their magnetic anisotropy even further.

17.
Chemistry ; 21(13): 4923-5, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25688543

RESUMO

Melittin is a membrane-active peptide from bee venom with promising antimicrobial and anticancer activity. Herein we report on a simple and selective method for labeling of the tryptophan residue in melittin by the organometallic fragment [(C5 H5 )Ru](+) in aqueous solution and in air. Ruthenium coordination does not disturb the secondary structure of the peptide (as verified by 2D NMR spectroscopy), but changes the pattern of its intermolecular interactions resulting in an 11-fold decrease of hemolytic activity. The high stability of the organometallic conjugate allowed the establishment of the biodistribution of the labeled melittin in mice by inductively coupled plasma MS analysis of ruthenium.


Assuntos
Venenos de Abelha/química , Meliteno/química , Rutênio/química , Triptofano/química , Sequência de Aminoácidos , Animais , Camundongos , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos
18.
Inorg Chem ; 53(6): 3062-71, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24559424

RESUMO

Chloride ion-aided one-pot template self-assembly of a mixed pyrazoloxime ligand with phenylboronic acid on a corresponding metal(II) ion as a matrix afforded the first boron-capped zinc, cobalt, iron, and manganese pseudoclathrochelate tris-pyrazoloximates. The presence of a pseudocross-linking hydrogen-bonded chloride ion is critical for their formation, as the same chloride-capped complexes were isolated even in the presence of large excesses of bromide and iodide ions. As revealed by X-ray diffraction, all complexes are capped with a chloride ion via three N-H···Cl hydrogen bonds that stabilize their pseudomacrobicyclic frameworks. The MN6 coordination polyhedra possess a distorted trigonal prismatic geometry, with the distortion angles φ between their nonequivalent N3 bases of approximately 0°. Temperature dependences of the effective magnetic moment for the paramagnetic complexes showed the encapsulated metal(II) ions to be in a high-spin state in the temperature range of 2-300 K. In the case of the iron(II) pseudoclathrochelate, density functional theory (DFT) and time-dependent DFT calculations were used to assess its spin state as well as the (57)Fe Mössbauer and UV-vis-NIR parameters. Cyclic voltammetry studies performed for these pseudomacrobicyclic complexes showed them to undergo irreversible or quasi-reversible metal-localized oxidations and reductions. As no changes are observed in the presence of a substantial excess of bromide ion, no anion-exchange reaction occurs, and thus the pseudoclathrochelates have a high affinity toward chloride anions in solution.

19.
Astrobiology ; 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39435686

RESUMO

Understanding how organics degrade under galactic cosmic rays (GCRs) is critical as we search for traces of ancient life on Mars. Even if the planet harbored life early in its history, its surface rocks have been exposed to ionizing radiation for about four billion years, potentially destroying the vast majority of biosignatures. In this study, we investigated for the first time the impact of simulated GCRs (using gamma rays) on several types of lipid biosignatures (including hopane C30, sterane C27, alkanes, and fatty acids [FAs]) in both the presence and absence of salts (NaCl, KCl, and MgCl2). We measured that the lipids degraded 6-20 times faster than amino acids in similar conditions; moreover, when irradiated in the presence of a salt substrate, degradation was at least 4-6 times faster than without salt, which suggests that salty environments that are often preferred targets for astrobiology warrant caution. We detected radiolytic by-products only for FAs-in the form of alkanes and aldehydes. These results expand our understanding of the degradation of organic molecules in Mars analog environments and underscore the urgent need to direct rover missions to sampling sites protected from GCRs, for example, sites on Mars that have been recently exposed by a wind scarp retreat or meteoritic impact.

20.
Astrobiology ; 24(7): 698-709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023275

RESUMO

Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus requires a clear understanding of the necessary ice depth where unaltered organic biomolecules might be present. We conducted radiolysis experiments by exposing individual amino acids in ices and amino acids from dead microorganisms in ices to gamma radiation to simulate conditions on these icy worlds. In the pure amino acid samples, glycine did not show a detectable decrease in abundance, whereas the abundance of isovaline decreased by 40% after 4 MGy of exposure. Amino acids in dead Escherichia coli (E. coli) organic matter exhibited a gradual decline in abundances with the increase of exposure dosage, although at much slower rates than individual amino acids. The majority of amino acids in dead A. woodii samples demonstrated a step function decline as opposed to a gradual decline. After the initial drop in abundance with 1 MGy of exposure, those amino acids did not display further decreases in abundance after exposure up to 4 MGy. New radiolysis constants for isolated amino acids and amino acids in dead E. coli material for Europa/Enceladus-like conditions have been derived. Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life detection measurements by Europa and Enceladus lander missions. Based on our measurements, the "safe" sampling depth on Europa is ∼20 cm at high latitudes of the trailing hemisphere in the area of little impact gardening. Subsurface sampling is not required for the detection of amino acids on Enceladus-these molecules will survive radiolysis at any location on the Enceladus surface. If the stability of amino acids observed in A. woodii organic materials is confirmed in other microorganisms, then the survival of amino acids from a potential biosphere in Europa ice would be significantly increased.


Assuntos
Aminoácidos , Escherichia coli , Exobiologia , Meio Ambiente Extraterreno , Raios gama , Gelo , Aminoácidos/análise , Meio Ambiente Extraterreno/química , Escherichia coli/efeitos da radiação , Exobiologia/métodos , Gelo/análise , Júpiter
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA