Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Childs Nerv Syst ; 34(8): 1497-1509, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29785653

RESUMO

PURPOSE: Histone deacetylate inhibitors (HDACi), as valproic acid (VA), have been reported to enhance efficacy and to prevent drug resistance in some tumors, including medulloblastoma (MB). In the present study, we investigated VA role, combined to cisplatin (CDDP) in cell viability and gene expression of MB cell lines. METHODS: Dose-response curve determined IC50 values for each treatment: (1) VA single, (2) CDDP single, and (3) VA and CDDP combined. Cytotoxicity and flow cytometry evaluated cell viability after exposure to treatments. Quantitative PCR evaluated gene expression levels of AKT, CTNNB1, GLI1, KDM6A, KDM6B, NOTCH2, PTCH1, and TERT, before and after treatment. Besides, we performed next-generation sequencing (NGS) for PTCH1, TERT, and TP53 genes. RESULTS: The most effective treatment to reduce viability was combined for D283MED and ONS-76; and CDDP single for DAOY cells (p < 0.0001). TERT, GLI1, and AKT genes were overexpressed after treatments with VA. D283MED and ONS-76 cells presented variants in TERT and PTCH1, respectively and DAOY cell line presented a TP53 mutation. CONCLUSIONS: MB tumors belonging to SHH molecular subgroup, with TP53MUT, would be the ones that present high risk in relation to VA use during the treatment, while TP53WT MBs can benefit from VA therapy, both SHH and groups 3 and 4. Our study shows a new perspective about VA action in medulloblastoma cells, raising the possibility that VA may act in different patterns. According to the genetic background of MB cell, VA can stimulate cell cycle arrest and apoptosis or induce resistance to treatment via signaling pathways activation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Neoplasias Cerebelares/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Meduloblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ácido Valproico/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Relação Dose-Resposta a Droga , Variação Genética/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Proteína Supressora de Tumor p53/genética , Ácido Valproico/farmacologia
2.
Mem Inst Oswaldo Cruz ; 109(1): 70-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141959

RESUMO

Dendritic cells (DCs) are antigen (Ag)-presenting cells that activate and stimulate effective immune responses by T cells, but can also act as negative regulators of these responses and thus play important roles in immune regulation. Pro-angiogenic vascular endothelial growth factor (VEGF) has been shown to cause defective DC differentiation and maturation. Previous studies have demonstrated that the addition of VEGF to DC cultures renders these cells weak stimulators of Ag-specific T cells due to the inhibitory effects mediated by VEGF receptor 1 (VEGFR1) and/or VEGFR2 signalling. As the enzyme indoleamine 2,3-dioxygenase (IDO) is recognised as an important negative regulator of immune responses, this study aimed to investigate whether VEGF affects the expression of IDO by DCs and whether VEGF-matured DCs acquire a suppressor phenotype. Our results are the first to demonstrate that VEGF increases the expression and activity of IDO in DCs, which has a suppressive effect on Ag-specific and mitogen-stimulated lymphocyte proliferation. These mechanisms have broad implications for the study of immunological responses and tolerance under conditions as diverse as cancer, graft rejection and autoimmunity.


Assuntos
Proliferação de Células/fisiologia , Células Dendríticas/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Antígenos de Superfície/biossíntese , Apoptose , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/ultraestrutura , Humanos , Tolerância Imunológica/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Leucócitos Mononucleares/fisiologia , Monócitos/citologia , Monócitos/ultraestrutura , Necrose , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia
3.
Biochem Biophys Res Commun ; 436(3): 551-6, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23770362

RESUMO

In Saccharomyces cerevisiae, Pho89 mediates a cation-dependent transport of Pi across the plasma membrane. This integral membrane protein belongs to the Inorganic Phosphate Transporter (PiT) family, a group that includes the mammalian Na(+)/Pi cotransporters Pit1 and Pit2. Here we report that the Pichia pastoris expressed recombinant Pho89 was purified in the presence of Foscholine-12 and functionally reconstituted into proteoliposomes with a similar substrate specificity as observed in an intact cell system. The alpha-helical content of the Pho89 protein was estimated to 44%. EPR analysis showed that purified Pho89 protein undergoes conformational change upon addition of substrate.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/química , Transporte Biológico , Membrana Celular/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Pichia/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteolipídeos/química , Proteínas Recombinantes/química , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Biochem J ; 445(3): 413-22, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22587366

RESUMO

In Saccharomyces cerevisiae, the Pho84 phosphate transporter acts as the main provider of phosphate to the cell using a proton symport mechanism, but also mediates rapid activation of the PKA (protein kinase A) pathway. These two features led to recognition of Pho84 as a transceptor. Although the physiological role of Pho84 has been studied in depth, the mechanisms underlying the transport and sensor functions are unclear. To obtain more insight into the structure-function relationships of Pho84, we have rationally designed and analysed site-directed mutants. Using a three-dimensional model of Pho84 created on the basis of the GlpT permease, complemented with multiple sequence alignments, we selected Arg(168) and Lys(492), and Asp(178), Asp(358) and Glu(473) as residues potentially involved in phosphate or proton binding respectively, during transport. We found that Asp(358) (helix 7) and Lys(492) (helix 11) are critical for the transport function, and might be part of the putative substrate-binding pocket of Pho84. Moreover, we show that alleles mutated in the putative proton-binding site Asp(358) are still capable of strongly activating PKA pathway targets, despite their severely reduced transport activity. This indicates that signalling does not require transport and suggests that mutagenesis of amino acid residues involved in binding of the co-transported ion may constitute a promising general approach to separate the transport and signalling functions in transceptors.


Assuntos
Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Fúngico/genética , Genes Fúngicos , Cinética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/química , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais
5.
BMC Biochem ; 13: 11, 2012 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-22726655

RESUMO

BACKGROUND: The Gtr1 protein of Saccharomyces cerevisiae is a member of the RagA subfamily of the Ras-like small GTPase superfamily. Gtr1 has been implicated in various cellular processes. Particularly, the Switch regions in the GTPase domain of Gtr1 are essential for TORC1 activation and amino acid signaling. Therefore, knowledge about the biochemical activity of Gtr1 is required to understand its mode of action and regulation. RESULTS: By employing tryptophan fluorescence analysis and radioactive GTPase assays, we demonstrate that Gtr1 can adopt two distinct GDP- and GTP-bound conformations, and that it hydrolyses GTP much slower than Ras proteins. Using cysteine mutagenesis of Arginine-37 and Valine-67, residues at the Switch I and II regions, respectively, we show altered GTPase activity and associated conformational changes as compared to the wild type protein and the cysteine-less mutant. CONCLUSIONS: The extremely low intrinsic GTPase activity of Gtr1 implies requirement for interaction with activating proteins to support its physiological function. These findings as well as the altered properties obtained by mutagenesis in the Switch regions provide insights into the function of Gtr1 and its homologues in yeast and mammals.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
6.
Biochemistry ; 49(30): 6430-9, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20565143

RESUMO

The anion transporter 1 (ANTR1) from Arabidopsis thaliana, homologous to the mammalian members of the solute carrier 17 (SLC17) family, is located in the chloroplast thylakoid membrane. When expressed heterologously in Escherichia coli, ANTR1 mediates a Na(+)-dependent active transport of inorganic phosphate (P(i)). The aim of this study was to identify amino acid residues involved in P(i) binding and translocation by ANTR1 and in the Na(+) dependence of its activity. A three-dimensional structural model of ANTR1 was constructed using the crystal structure of glycerol 3-phosphate/phosphate antiporter from E. coli as a template. Based on this model and multiple sequence alignments, five highly conserved residues in plant ANTRs and mammalian SLC17 homologues have been selected for site-directed mutagenesis, namely, Arg-120, Ser-124, and Arg-201 inside the putative translocation pathway and Arg-228 and Asp-382 exposed at the cytoplasmic surface of the protein. The activities of the wild-type and mutant proteins have been analyzed using expression in E. coli and radioactive P(i) transport assays and compared with bacterial cells carrying an empty plasmid. The results from P(i)- and Na(+)-dependent kinetics indicate the following: (i) Arg-120 and Arg-201 may be important for binding and translocation of the substrate; (ii) Ser-124 may function as a transient binding site for Na(+) ions in close proximity to the periplasmic side; (iii) Arg-228 and Asp-382 may participate in interactions associated with protein conformational changes required for full transport activity. Functional characterization of ANTR1 should provide useful insights into the function of other plant and mammalian SLC17 homologous transporters.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Transporte de Fosfato/química , Homologia Estrutural de Proteína , Tilacoides/metabolismo , Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/genética , Sítios de Ligação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Fosfato/genética , Ligação Proteica
7.
Sci Rep ; 9(1): 9973, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292491

RESUMO

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.


Assuntos
Antineoplásicos/farmacologia , Ependimoma/tratamento farmacológico , Proteínas e Peptídeos Salivares/farmacologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Proteínas de Artrópodes , Criança , Pré-Escolar , Feminino , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Humanos , Masculino , Ratos Wistar , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Cell Transplant ; 28(9-10): 1306-1320, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31161782

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia-reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.


Assuntos
Líquido Amniótico/metabolismo , Comportamento Animal , Isquemia Encefálica , Transplante de Células-Tronco , Células-Tronco/metabolismo , Acidente Vascular Cerebral , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Gravidez , Ratos , Ratos Wistar , Células-Tronco/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
9.
Stem Cell Res Ther ; 9(1): 310, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413179

RESUMO

BACKGROUND: Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. METHODS/RESULTS: We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. CONCLUSIONS: Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/patologia , Tropismo , Animais , Neoplasias Encefálicas/ultraestrutura , Carcinogênese/metabolismo , Carcinogênese/patologia , Ensaios de Migração Celular , Proliferação de Células , Separação Celular , Quimiocinas/metabolismo , Glioblastoma/ultraestrutura , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Modelos Biológicos , Células-Tronco Neoplásicas/ultraestrutura , Pontos Quânticos/metabolismo , Ratos Wistar , Receptores de Quimiocinas/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
10.
Oncotarget ; 9(31): 21731-21743, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29774098

RESUMO

BACKGROUND: Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. RESULTS: We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. CONCLUSIONS: We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. METHODS: In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

11.
Stem Cell Res Ther ; 7(1): 97, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465541

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. METHODS: We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. RESULTS: The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. CONCLUSION: Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.


Assuntos
Adipócitos/metabolismo , Inativação Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Antígenos Thy-1/genética , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Proliferação de Células , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Imunofenotipagem , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/metabolismo , Antígenos Thy-1/metabolismo
12.
Oncotarget ; 7(26): 40546-40557, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27244897

RESUMO

Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.


Assuntos
Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/citologia , Adipócitos/citologia , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Sangue Fetal/citologia , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/citologia , Microesferas , Ratos , Ratos Wistar
13.
Micron ; 36(5): 449-60, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15935305

RESUMO

The mandibular glands of Hymenoptera are structures associated with the mandibles and constitute part of the salivary glands system. Histological studies in workers of Atta sexdens rubropilosa revealed that this gland contains two portions: a secretory and a storage portion or reservoir. Both portions are connected by means of canaliculi. The object of the present work was the study of the ultratructure of the mandibular glands of minima, media and soldier ant of A. s. rubropilosa by TEM techniques. The glands, in the three castes studied, possess a reservoir, constituted by a simple pavementous epithelium surrounded by the cuticular intima and the secretory portion is constituted by cells of rounded shape. The secretory cells, mainly of minima and soldier, were rich in smooth endoplasmic reticulum. The media worker and soldier presented a large number of mitochondria, of varying shape. Well-developed Golgi complexes were also present in the soldiers. The secretory cells in minima, media and soldier were provided with collecting intracellular canaliculi, which were linked to the reservoir through the extracellular portion. The cytoplasm of the canaliculi-forming cell was poor in organelles. In the individuals of the three castes of A. s. rubropilosa, the presence of lipid secretion granules suggested, beyond the other functions, also a possible pheromonal action. The different roles executed by the different insect castes are directly dependent on the glandular products and, consequently, on the secretory cellular characteristics.


Assuntos
Himenópteros/ultraestrutura , Glândula Submandibular/ultraestrutura , Animais , Citoplasma/ultraestrutura , Microscopia Eletrônica de Transmissão
14.
Cell Transplant. ; 28(9-10): 1306–1320, 2019.
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib17239

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

15.
Sci. Rep. ; 9(9973)2019.
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib16121

RESUMO

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.

16.
Front Neurol ; 4: 214, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24432012

RESUMO

Glioblastomas are the most lethal primary brain tumor that frequently relapse or progress as focal masses after radiation, suggesting that a fraction of tumor cells are responsible for the tumor regrowth. The identification of a brain tumor cell subpopulation with potent tumorigenic activity supports the cancer stem cell hypothesis in solid tumors. The goal of this study is to determine a methodology for the establishment of primary human glioblastoma cell lines. Our aim is achieved by taking the following approaches: (i) the establishment of primary glioblastoma cell culture; (ii) isolation of neurospheres derived from glioblastoma primary cultures; (iii) selection of CD133 cells from neurospheres, (iv) formation of subspheres in the CD133-positive population, (v) study of the expression level of GFAP, CD133, Nestin, Nanog, CD34, Sox2, CD44, and CD90 markers on tumor subspheres. Hence, we described a successful method for isolation of CD133-positive cell population and establishment of glioblastoma neurospheres from this primary culture, which are more robust than the ones derived straight from the tumor. Pointed out that the neurospheres derived from glioblastoma primary culture showed 29% more cells expressing CD133 then the ones straight tumor-derived, denoting a higher concentration of CD133-positive cells in the neurospheres derived from glioblastoma primary culture. These CD133-positive fractions were able to further generate subspheres. The subspheres derived from glioblastoma primary culture presented a well-defined morphology while the ones derived from the fresh tumor were sparce and less robust. And the negative fraction of CD133 cells was unable to generate subspheres. The tumor subspheres expressed GFAP, CD133, Nestin, Nanog, CD44, and CD90. Also, the present study describes an optimization of neurospheres/subspheres isolation from glioblastoma primary culture by selection of CD133-positive adherent stem cell.

17.
Int J Nanomedicine ; 9: 337-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24531365

RESUMO

Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 10(5) cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.


Assuntos
Rastreamento de Células/métodos , Sangue Fetal/citologia , Nanopartículas de Magnetita , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Movimento Celular , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Feminino , Corantes Fluorescentes , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Masculino , Transplante de Células-Tronco Mesenquimais , Nanomedicina , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Gravidez , Ratos , Ratos Wistar , Rodaminas , Substância Negra/citologia
18.
Stem Cell Res. Ther. ; 9: 310, 2018.
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: but-ib15671

RESUMO

Background Previous studies have demonstrated remarkable tropism of mesenchymal stem cells (MSCs) toward malignant gliomas, making these cells a potential vehicle for delivery of therapeutic agents to disseminated glioblastoma (GBM) cells. However, the potential contribution of MSCs to tumor progression is a matter of concern. It has been suggested that CD133+ GBM stem cells secrete a variety of chemokines, including monocytes chemoattractant protein-1 (MCP-1/CCL2) and stromal cell-derived factor-1(SDF-1/CXCL12), which could act in this tropism. However, the role in the modulation of this tropism of the subpopulation of CD133+ cells, which initiate GBM and the mechanisms underlying the tropism of MSCs to CD133+ GBM cells and their effects on tumor development, remains poorly defined. Methods/results We found that isolated and cultured MSCs (human umbilical cord blood MSCs) express CCR2 and CXCR4, the respective receptors for MCP-1/CCL2 and SDF-1/CXCL12, and demonstrated, in vitro, that MCP-1/CCL2 and SDF-1/CXC12, secreted by CD133+ GBM cells from primary cell cultures, induce the migration of MSCs. In addition, we confirmed that after in vivo GBM tumor establishment, by stereotaxic implantation of the CD133+ GBM cells labeled with Qdots (705 nm), MSCs labeled with multimodal iron oxide nanoparticles (MION) conjugated to rhodamine-B (Rh-B) (MION-Rh), infused by caudal vein, were able to cross the blood-brain barrier of the animal and migrate to the tumor region. Evaluation GBM tumors histology showed that groups that received MSC demonstrated tumor development, glial invasiveness, and detection of a high number of cycling cells. Conclusions Therefore, in this study, we validated the chemotactic effect of MCP-1/CCL2 and SDF-1/CXCL12 in mediating the migration of MSCs toward CD133+ GBM cells. However, we observed that, after infiltrating the tumor, MSCs promote tumor growth in vivo probably by release of exosomes. Thus, the use of these cells as a therapeutic carrier strategy to target GBM cells must be approached with caution.

19.
Cell Transplant, v. 28, n. 9-10, p. 1306-1320, jun. 2019
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-2856

RESUMO

Amniotic fluid has been investigated as new cell source for stem cells in the development of future cell-based transplantation. This study reports isolation of viable human amniotic fluid-derived stem cells, labeled with multimodal iron oxide nanoparticles, and its effect on focal cerebral ischemia–reperfusion injury in Wistar rats. Middle cerebral artery occlusion of 60 min followed by reperfusion for 1 h, 6 h, and 24 h was employed in the present study to produce ischemia and reperfusion-induced cerebral injury in rats. Tests were employed to assess the functional outcome of the sensorimotor center activity in the brain, through a set of modified neurological severity scores used to assess motor and exploratory capacity 24 h, 14, and 28 days after receiving cellular therapy via tail vein. In our animal model of stroke, transplanted cells migrated to the ischemic focus, infarct volume decreased, and motor deficits improved. Therefore, we concluded that these cells appear to have beneficial effects on the ischemic brain, possibly based on their ability to enhance endogenous repair mechanisms.

20.
Sci Rep, v. 9, n. 9973, jul. 2019
Artigo em Inglês | SES-SP, SESSP-IBPROD, SES-SP | ID: bud-2803

RESUMO

EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA