Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Bioorg Med Chem Lett ; 73: 128900, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863718

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in transduction of IL-1R/TLR signaling which is responsible for innate immune response. From HTS campaign, bicyclic-pyrimidine compounds have been identified as potent IRAK4 inhibitors, exhibiting good potency in both IRAK4 biochemical and LPS induced IL-23 inhibition cell-based assays. The SAR efforts were focused on further improving on-target potency, reducing PAD activities of HTS hit molecule and improving in vivo PK profiles of early lead compounds. When different aromatic rings were fused to the pyrimidine core, and with various substituents at 2- or 4-position of the pyrimidine, the impact on potency and PK properties were observed and are discussed. Selected compounds were further evaluated in IL-1ß induced IL-6 inhibition acute animal model and rodent arthritis disease model, of which compounds 33 and 39 showed good efficacy in both studies.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Pirimidinas , Animais , Imunidade Inata , Pirimidinas/farmacologia , Transdução de Sinais
2.
Bioorg Med Chem ; 71: 116951, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973281

RESUMO

Using an in-cell AMPK activation assay, we have developed structure-activity relationships around a hit pyridine dicarboxamide 5 that resulted in 40 (R419). A particular focus was to retain the on-target potency while also improving microsomal stability and reducing off-target activities, including hERG inhibition. We were able to show that removing a tertiary amino group from the piperazine unit of hit compound 5 improved microsomal stability while hERG inhibition was improved by modifying the substitution of the central core pyridine ring. The SAR resulted in 40, which continues to maintain on-target potency. Compound 40 was able to activate AMPK in vivo after oral administration and showed efficacy in animal models investigating activation of AMPK as a therapy for glucose control (both db/db and DIO mouse models).


Assuntos
Proteínas Quinases Ativadas por AMP , Hipoglicemiantes , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ativação Enzimática , Hipoglicemiantes/farmacologia , Camundongos , Piridinas , Relação Estrutura-Atividade
3.
Bioorg Med Chem Lett ; 27(11): 2617-2621, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28408219

RESUMO

A structure-activity relationship has been developed around the meridianin scaffold for inhibition of Dyrk1a. The compounds have been focussed on the inhibition of kinase Dyrk1a, as a means to retain the transcription factor NFAT in the nucleus. NFAT is responsible for up-regulation of genes responsible for the induction of a slow, oxidative skeletal muscle phenotype, which may be an effective treatment for diseases where exercise capacity is compromised. The SAR showed that while strong Dyrk1a binding was possible with the meridianin scaffold the compounds have no effect on NFAT localisation, however, by moving from the indole to a 6-azaindole scaffold both potent Dyrk1a binding and increased NFAT residence time in the nucleus were obtained - properties not observed with the reported Dyrk1a inhibitors. One compound was shown to be effective in an ex vivo muscle fiber assay. The increased biological activity is thought to arise from the added interaction between the azaindole nitrogen and the lysine residue in the back pocket.


Assuntos
Núcleo Celular/metabolismo , Alcaloides Indólicos/química , Fatores de Transcrição NFATC/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Compostos Aza/química , Sítios de Ligação , Núcleo Celular/efeitos dos fármacos , Humanos , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/farmacologia , Indóis/química , Concentração Inibidora 50 , Camundongos , Microscopia Confocal , Simulação de Acoplamento Molecular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fatores de Transcrição NFATC/genética , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Regulação para Cima/efeitos dos fármacos , Quinases Dyrk
4.
Am J Physiol Regul Integr Comp Physiol ; 310(8): R707-10, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864813

RESUMO

Respiratory dysfunction is prevalent in critically ill patients and can lead to adverse clinical outcomes, including respiratory failure and increased mortality. Respiratory muscles, which normally sustain respiration through inspiratory muscle contractions, become weakened during critical illness, and recent studies suggest that respiratory muscle weakness is related to systemic inflammation. Here, we investigate the pathophysiological role of the inflammatory JAK1/3 signaling pathway in diaphragm weakness in two distinct experimental models of critical illness. In the first experiment, mice received subcutaneous injections of PBS or C26 cancer cells and were fed chow formulated with or without the JAK1/3 inhibitor R548 for 26 days. Diaphragm specific force was significantly reduced in tumor-bearing mice receiving standard chow; however, treatment with the JAK1/3 inhibitor completely prevented diaphragm weakness. Diaphragm cross-sectional area was diminished by ∼25% in tumor-bearing mice but was similar to healthy mice in tumor-bearing animals treated with R548. In the second study, mice received sham surgery or coronary artery ligation, leading to myocardial infarction (MI), and were treated with R548 or vehicle 1 h postsurgery, and once daily for 3 days. Diaphragm specific force was comparable between sham surgery/vehicle, sham surgery/R548 and MI/R548 groups, but significantly decreased in the MI/vehicle group. Markers of oxidative damage and activated caspase-3, mechanisms previously identified to reduce muscle contractility, were not elevated in diaphragm extracts. These experiments implicate JAK1/3 signaling in cancer- and MI-mediated diaphragm weakness in mice, and provide a compelling case for further investigation.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Diafragma/efeitos dos fármacos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Força Muscular/efeitos dos fármacos , Debilidade Muscular/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transtornos Respiratórios/prevenção & controle , Animais , Caquexia/enzimologia , Caquexia/etiologia , Caquexia/fisiopatologia , Neoplasias do Colo/complicações , Neoplasias do Colo/enzimologia , Neoplasias do Colo/fisiopatologia , Diafragma/enzimologia , Diafragma/fisiopatologia , Modelos Animais de Doenças , Janus Quinase 1/metabolismo , Janus Quinase 3/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Debilidade Muscular/enzimologia , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/fisiopatologia , Respiração/efeitos dos fármacos , Transtornos Respiratórios/enzimologia , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
5.
Mol Med ; 20: 579-89, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25286450

RESUMO

Mechanical ventilation (MV) is one of the lynchpins of modern intensive-care medicine and is life saving in many critically ill patients. Continuous ventilator support, however, results in ventilation-induced diaphragm dysfunction (VIDD) that likely prolongs patients' need for MV and thereby leads to major associated complications and avoidable intensive care unit (ICU) deaths. Oxidative stress is a key pathogenic event in the development of VIDD, but its regulation remains largely undefined. We report here that the JAK-STAT pathway is activated in MV in the human diaphragm, as evidenced by significantly increased phosphorylation of JAK and STAT. Blockage of the JAK-STAT pathway by a JAK inhibitor in a rat MV model prevents diaphragm muscle contractile dysfunction (by ~85%, p < 0.01). We further demonstrate that activated STAT3 compromises mitochondrial function and induces oxidative stress in vivo, and, interestingly, that oxidative stress also activates JAK-STAT. Inhibition of JAK-STAT prevents oxidative stress-induced protein oxidation and polyubiquitination and recovers mitochondrial function in cultured muscle cells. Therefore, in ventilated diaphragm muscle, activation of JAK-STAT is critical in regulating oxidative stress and is thereby central to the downstream pathogenesis of clinical VIDD. These findings establish the molecular basis for the therapeutic promise of JAK-STAT inhibitors in ventilated ICU patients.


Assuntos
Diafragma/metabolismo , Janus Quinases/metabolismo , Respiração Artificial/efeitos adversos , Fatores de Transcrição STAT/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diafragma/fisiopatologia , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais
6.
FASEB J ; 28(7): 2790-803, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24671708

RESUMO

Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.


Assuntos
Diafragma/metabolismo , Janus Quinases/metabolismo , Respiração Artificial/efeitos adversos , Transdução de Sinais/fisiologia , Animais , Interleucina-6/metabolismo , Masculino , Mitocôndrias/metabolismo , Debilidade Muscular/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo/fisiologia , Fosforilação/fisiologia , Proteólise , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
7.
Bioorg Med Chem Lett ; 25(22): 5199-202, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26463131

RESUMO

Structure-activity relationships have been developed around 5-bromo-8-toluylsulfonamidoquinoline 1 a hit compound in an assay for the interaction of the E3 ligase Skp2 with Cks1, part of the SCF ligase complex. Disruption of this protein-protein interaction results in higher levels of CDK inhibitor p27, which can act as a tumor suppressor. The results of the SAR developed highlight the relationship between the sulfonamide and quinoline nitrogen, while also suggesting that an aryl substituent at the 5-position of the quinoline ring contributes to the potency in the interaction assay. Compounds showing potency in the interaction assay result in greater levels of p27 and have been shown to inhibit cell growth of two p27 sensitive tumor cell lines.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Quinases relacionadas a CDC2 e CDC28/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Sulfonamidas/farmacologia , Aminoquinolinas/síntese química , Antineoplásicos/síntese química , Quinases relacionadas a CDC2 e CDC28/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas Quinases Associadas a Fase S/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química
8.
Bioorg Med Chem Lett ; 25(10): 2122-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25891105

RESUMO

Using cultured human mast cells (CHMC) the optimization of 2,4-diaminopyrimidine compounds leading to 22, R406 is described. Compound 22 is a potent upstream inhibitor of mast cell degranulation and its mechanism of action is via inhibition of Syk kinase. Compound 22 has significant activity in inhibiting both IgE- and IgG-mediated activation of Fc receptor (FcR) in mast cells and basophils, and in addition inhibits Syk kinase-dependent activity of FcR-mediated activation of monocytes, macrophages, neutrophils, and B cell receptor (BCR)-mediated activation of B lymphocytes. Overall, the biological activity of 22 suggests that it has potential for application as a novel therapeutic for the treatment of an array of autoimmune maladies and hematological malignancies.


Assuntos
Desenho de Fármacos , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Pirimidinas/farmacologia , Receptores Fc/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Bioorg Med Chem Lett ; 25(10): 2117-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25872982

RESUMO

Here we report the optimization of small molecule inhibitors of human mast cell degranulation via anti-IgE-mediated tryptase release following cross-linking and activation of IgE-loaded FcεR1 receptors. The compounds are selective upstream inhibitors of FcεR1-dependent human mast cell degranulation and proved to be devoid of activity in downstream ionomycin mediated degranulation. Structure-activity relationship (SAR) leading to compound 26 is outlined.


Assuntos
Desenho de Fármacos , Imunoglobulina E/imunologia , Mastócitos/efeitos dos fármacos , Células Cultivadas , Humanos , Mastócitos/citologia , Mastócitos/imunologia , Relação Estrutura-Atividade
10.
Am J Physiol Heart Circ Physiol ; 306(8): H1128-45, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24561866

RESUMO

Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Dieta Hiperlipídica , Ativadores de Enzimas/administração & dosagem , Obesidade/complicações , Doenças Vasculares Periféricas/fisiopatologia , Esforço Físico/fisiologia , Envelhecimento , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Arginina/análogos & derivados , Arginina/sangue , Cilostazol , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Claudicação Intermitente/complicações , Claudicação Intermitente/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/metabolismo , Doenças Vasculares Periféricas/etiologia , Inibidores da Fosfodiesterase 3/administração & dosagem , Tetrazóis/administração & dosagem , Vasodilatadores
11.
Blood ; 117(25): 6866-75, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21531978

RESUMO

The activating mutations in JAK2 (including JAK2V617F) that have been described in patients with myeloproliferative neoplasms (MPNs) are linked directly to MPN pathogenesis. We developed R723, an orally bioavailable small molecule that inhibits JAK2 activity in vitro by 50% at a concentration of 2nM, while having minimal effects on JAK3, TYK2, and JAK1 activity. R723 inhibited cytokine-independent CFU-E growth and constitutive activation of STAT5 in primary hematopoietic cells expressing JAK2V617F. In an anemia mouse model induced by phenylhydrazine, R723 inhibited erythropoiesis. In a leukemia mouse model using Ba/F3 cells expressing JAK2V617F, R723 treatment prolonged survival and decreased tumor burden. In V617F-transgenic mice that closely mimic human primary myelofibrosis, R723 treatment improved survival, hepatosplenomegaly, leukocytosis, and thrombocytosis. R723 preferentially targeted the JAK2-dependent pathway rather than the JAK1- and JAK3-dependent pathways in vivo, and its effects on T and B lymphocytes were mild compared with its effects on myeloid cells. Our preclinical data indicate that R723 has a favorable safety profile and the potential to become an efficacious treatment for patients with JAK2V617F-positive MPNs.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Anemia Hemolítica/induzido quimicamente , Animais , Linhagem Celular , Células Cultivadas , Eritropoese/efeitos dos fármacos , Feminino , Humanos , Janus Quinase 2/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Leucocitose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Mutação/efeitos dos fármacos
12.
J Med Chem ; 66(24): 17086-17104, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38079537

RESUMO

A set of focused analogues have been generated around a lead indirect adenosine monophosphate-activated kinase (AMPK) activator to improve the rat clearance of the molecule. Analogues were focused on inhibiting amide hydrolysis by the strategic placement of substituents that increased the steric environment about the secondary amide bond between 4-aminopiperidine and pyridine-5-carboxylic acid. It was found that placing substituents at position 3 of the piperidine ring and position 4 of the pyridine could all improve clearance without significantly impacting on-target potency. Notably, trans-3-fluoropiperidine 32 reduced rat clearance from above liver blood flow to 19 mL/min/kg and improved the hERG profile by attenuating the basicity of the piperidine moiety. Oral dosing of 32 activated AMPK in mouse liver and after 2 weeks of dosing improved glucose handling in a db/db mouse model of Type II diabetes as well as lowering fasted glucose and insulin levels.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Ratos , Animais , Proteínas Quinases Ativadas por AMP , Diamida , Glucose , Piridinas/farmacologia , Piperidinas , Amidas
13.
ACS Med Chem Lett ; 13(4): 714-719, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450353

RESUMO

IRAK4 kinase plays a key role in TLR/IL-1R signaling pathways that regulate innate immune responses, and if uncontrolled, it is responsible for various inflammatory disorders. By high-throughput screening (HTS) and hit-to-lead optimization, compounds with a 5-aryl-2,4-diaminopyrimidine core structure have been identified as potent IRAK4 inhibitors. A cocrystal structure of IRAK4 protein with an early lead molecule helped with understanding the structure-activity relationship and the design of the new compounds. Initial HTS hits from this series of compounds were also found to inhibit TAK1 kinase, which would cause liver toxicity and potentially bone marrow failure. Optimization of this series resulted in improved selectivity over TAK1 kinase. The TAK1 selectivity was found to be closely associated with different sizes and types of substituents at the 5-position of the pyrimidine. The impact of other pyrimidine substituents on the potency and selectivity was also explored. A few representative compounds were evaluated in IL-1ß-induced IL-6 inhibition animal model studies and showed modest efficacy.

14.
ACS Med Chem Lett ; 13(11): 1805-1811, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36385926

RESUMO

Janus kinases (JAK) play a critical role in JAK/signal transducer and activator of transcription (STAT) signaling pathways that mediate immune response and cell growth. From high-throughput screening (HTS) hit to lead optimization, a series of pyrimidine compounds has been discovered as potent JAK1 inhibitors with selectivity over JAK2. Cell-based assays were used as primary screening methods for evaluating potency and selectivity, the results were further assessed and confirmed by biochemical and additional cellular assays for lead molecules. Also discussed is the unique correlation between a trifluomethyl group and CYP3A4 inhibition in the presence of NADPH, the activity of which was successfully decreased with the reduction of fluoro-atoms, increasing IC50 from 0.5 µM to >10 µM. The development of novel and scalable synthetic routes for amino-phenyl intermediates was essential for the discovery of late-stage lead molecules, including clinical candidate R507 (33). In preclinical studies, 33 exhibited great efficacy in mouse studies by inhibiting IFNγ expression induced by IL-2 and in a rat collagen-induced arthritis disease model.

15.
J Immunol ; 183(3): 2183-92, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19596999

RESUMO

JAK3, a member of the Janus kinase family, is predominantly expressed in hemopoietic cells and binds specifically to the common gamma chain of a subfamily of cytokine receptors that includes IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Previous studies suggest that this tyrosine kinase plays key roles in mediating T cell functions, and inhibition of JAK3 has been shown to prevent graft rejection and decrease the severity of arthritis in rodent models. However, the functions of JAK3 in the development of skin immune responses and diseases such as psoriasis have not been determined. CD18 mutant PL/J mice develop spontaneous T cell-dependent psoriasiform skin disease with several similarities to human psoriasis. In this study, we treated mice with established skin disease with R348, a small molecule inhibitor of JAK3, and observed a marked attenuation of skin lesions following 6 wk of treatment. Histological analyses revealed major reductions of both epidermal and dermal lesion severity scores in R348-treated CD18-deficient PL/J mice compared with vehicle controls, which was associated with decreased CD4(+) T cell infiltration. In addition, systemic levels of IL-17, IL-22, IL-23, and TNF-alpha were significantly lower in mice receiving the compound, and T cells isolated from R348-treated mice also showed reduced phosphorylation of Stat5 after stimulation with IL-2. These findings suggest that small-molecule inhibitors of JAK3 may be useful in the treatment of inflammatory skin diseases such as psoriasis and strongly implicate JAK signaling events as important in the pathogenesis of this disease.


Assuntos
Antígenos CD18/genética , Inflamação/tratamento farmacológico , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Psoríase/tratamento farmacológico , Animais , Linfócitos T CD4-Positivos/fisiologia , Quimiotaxia , Citocinas/análise , Janus Quinase 3/imunologia , Janus Quinase 3/fisiologia , Camundongos , Camundongos Mutantes , Inibidores de Proteínas Quinases/farmacologia , Psoríase/patologia , Fator de Transcrição STAT5/metabolismo , Resultado do Tratamento
16.
Chem Biol ; 14(10): 1105-18, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17961823

RESUMO

Small-molecule library screening to find compounds that inhibit TNFalpha-induced, but not interleukin 1beta (IL-1beta)-induced, intercellular adhesion molecule 1 (ICAM-1) expression in lung epithelial cells identified a class of triazoloquinoxalines. These compounds not only inhibited the TNFalpha-induced nuclear factor kappaB (NFkappaB) survival pathway but also blocked death-pathway activation. Such dual activity makes them unique against other known NFkappaB-pathway inhibitors that inhibit only a subset of TNFalpha signals leading to increased TNFalpha-induced cytotoxicity. Interestingly, these compounds inhibited association of TNFalpha receptor (TNFalphaR) I with TNFalphaR-associated death domain protein (TRADD) and receptor interacting protein 1 (RIP1), the initial intracellular signaling event following TNFalpha stimulation. Further study showed that they blocked ligand-dependent internalization of the TNFalpha-TNFalphaR complex, thereby inhibiting most of the TNFalpha-induced cellular responses. Thus, compounds with a triazoloquinoxaline scaffold could be a valuable tool to investigate small molecule-based anti-TNFalpha therapies.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Quinoxalinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Triazóis/farmacologia , Fator de Necrose Tumoral alfa , Apoptose/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Células Epiteliais/citologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Molécula 1 de Adesão Intercelular/genética , Pulmão/citologia , Pulmão/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Bibliotecas de Moléculas Pequenas , Proteína de Domínio de Morte Associada a Receptor de TNF/genética
17.
Mol Biol Cell ; 16(12): 5621-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16195352

RESUMO

Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Divisão Celular/fisiologia , Neoplasias/enzimologia , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Clonagem Molecular , Células HeLa , Humanos , Cinética , Oligonucleotídeos Antissenso , Proteínas Recombinantes/metabolismo , Retroviridae/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases
18.
Clin Cancer Res ; 12(12): 3831-42, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16778111

RESUMO

PURPOSE: The design and development of synthetic small molecules to disrupt microtubule dynamics is an attractive therapeutic strategy for anticancer drug discovery research. Loss of clinical efficacy of many useful drugs due to drug resistance in tumor cells seems to be a major hurdle in this endeavor. Thus, a search for new chemical entities that bind tubulin, but neither are a substrate of efflux pump, P-glycoprotein 170/MDR1, nor cause undesired side effects, would potentially increase the therapeutic index in certain cancer treatments. EXPERIMENTAL DESIGN: A high-content cell-based screen of a compound library led to the identification of a new class of compounds belonging to a thienopyrimidine series, which exhibited significant antitumor activities. On structure-activity relationship analysis, R-253 [N-cyclopropyl-2-(6-(3,5-dimethylphenyl)thieno[3,2-d]pyrimidin-4-yl)hydrazine carbothioamide] emerged as a potent antiproliferative agent (average EC(50), 20 nmol/L) when examined in a spectrum of tumor cell lines. RESULTS: R-253 is structurally unique and destabilizes microtubules both in vivo and in vitro. Standard fluorescence-activated cell sorting and Western analyses revealed that the effect of R-253 on cell growth was associated with cell cycle arrest in mitosis, increased select G(2)-M checkpoint proteins, and apoptosis. On-target activity of R-253 on microtubules was further substantiated by immunofluorescence studies and selected counter assays. R-253 competed with fluorescent-labeled colchicine for binding to tubulin, indicating that its binding site on tubulin could be similar to that of colchicine. R-253 neither is a substrate of P-glycoprotein 170/MDR1 nor is cytotoxic to nondividing human hepatocytes. CONCLUSION: Both biochemical and cellular mechanistic studies indicate that R-253 could become a promising new tubulin-binding drug candidate for treating various malignancies.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microtúbulos/efeitos da radiação , Tiofenos/farmacologia , Tioureia/análogos & derivados , Adenocarcinoma , Antineoplásicos/farmacologia , Apoptose/efeitos da radiação , Neoplasias Ósseas , Ciclo Celular/efeitos da radiação , Neoplasias do Colo , Citometria de Fluxo , Células HeLa , Humanos , Neoplasias Pulmonares , Peso Molecular , Osteossarcoma , Pirimidinas/química , Tioureia/farmacologia
19.
Cancer Res ; 65(20): 9294-303, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16230391

RESUMO

A focus of contemporary cancer therapeutic development is the targeting of both the transformed cell and the supporting cellular microenvironment. Cell migration is a fundamental cellular behavior required for the complex interplay between multiple cell types necessary for tumor development. We therefore developed a novel retroviral-based screening technology in primary human endothelial cells to discover genes that control cell migration. We identified the receptor tyrosine kinase Axl as a novel regulator of endothelial cell haptotactic migration towards the matrix factor vitronectin. Using small interfering RNA-mediated silencing and overexpression of wild-type or mutated receptor proteins, we show that Axl is a key regulator of multiple angiogenic behaviors including endothelial cell migration, proliferation, and tube formation in vitro. Moreover, using sustained, retrovirally delivered short hairpin RNA (shRNA) Axl knockdown, we show that Axl is necessary for in vivo angiogenesis in a mouse model. Furthermore, we show that Axl is also required for human breast carcinoma cells to form a tumor in vivo. These findings indicate that Axl regulates processes vital for both neovascularization and tumorigenesis. Disruption of Axl signaling using a small-molecule inhibitor will hence simultaneously affect both the tumor and stromal cell compartments and thus represents a unique approach for cancer therapeutic development.


Assuntos
Neoplasias da Mama/enzimologia , Transformação Celular Neoplásica/metabolismo , Proteínas Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Neoplasias da Mama/irrigação sanguínea , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Humanos , Camundongos , Camundongos SCID , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Transfecção , Transplante Heterólogo , Vitronectina/farmacologia , Receptor Tirosina Quinase Axl
20.
Methods Enzymol ; 399: 740-54, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16338393

RESUMO

The anaphase-promoting complex (APC) is an E3 ubiquitin ligase that mediates the ubiquitination and degradation of the securin protein and mitotic cyclins, resulting in the regulation of the onset of sister-chromatid separation and mitotic exit. In an effort to identify novel therapeutic compounds that modulate cell proliferation and, therefore, have potential applications in oncology, a plate-based in vitro ubiquitination assay that uses recombinant purified E1, E2 (UbcH5c), E3 (APC11/APC2), and Flag-ubiquitin has been established and used to screen for small molecule inhibitors of APC E3 ligase activity. In this assay, APC2/APC11 is immobilized on the plate, and its E3 ligase activity (i.e., the incorporation of Flag-tagged polyubiquitin chain onto APC2/APC11 as a result of auto-ubiquitination) is detected with anti-Flag-horseradish peroxidase-conjugated antibody by monitoring the luminescence signal from the plate. Here we describe in detail the protocol for high-throughput screening of APC, including expression and purification of the individual proteins, assay development, and optimization. This assay has been validated in a 96-well plate format and successfully implemented to identify novel small molecule compounds that potently inhibit APC2/APC11 ligase activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA