Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Genome Res ; 29(10): 1685-1692, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548357

RESUMO

With two genomes in the same organism, interspecific hybrids have unique fitness opportunities and costs. In both plants and yeasts, wild, pathogenic, and domesticated hybrids may eliminate portions of one parental genome, a phenomenon known as loss of heterozygosity (LOH). Laboratory evolution of hybrid yeast recapitulates these results, with LOH occurring in just a few hundred generations of propagation. In this study, we systematically looked for alleles that are beneficial when lost in order to determine how prevalent this mode of adaptation may be and to determine candidate loci that might underlie the benefits of larger-scale chromosome rearrangements. These aims were accomplished by mating Saccharomyces uvarum with the S. cerevisiae deletion collection to create hybrids such that each nonessential S. cerevisiae allele is deleted. Competitive fitness assays of these pooled, barcoded, hemizygous strains, and accompanying controls, revealed a large number of loci for which LOH is beneficial. We found that the fitness effects of hemizygosity are dependent on the species context, the selective environment, and the species origin of the deleted allele. Further, we found that hybrids have a wider distribution of fitness consequences versus matched S. cerevisiae hemizygous diploids. Our results suggest that LOH can be a successful strategy for adaptation of hybrids to new environments, and we identify candidate loci that drive the chromosomal rearrangements observed in evolution of yeast hybrids.


Assuntos
Aptidão Genética/genética , Genoma Fúngico/genética , Hibridização Genética/fisiologia , Perda de Heterozigosidade/genética , Aptidão Genética/fisiologia , Saccharomyces/genética , Saccharomyces/fisiologia , Saccharomyces cerevisiae/genética
2.
Genome Res ; 29(3): 396-406, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635343

RESUMO

To understand how complex genetic networks perform and regulate diverse cellular processes, the function of each individual component must be defined. Comprehensive phenotypic studies of mutant alleles have been successful in model organisms in determining what processes depend on the normal function of a gene. These results are often ported to newly sequenced genomes by using sequence homology. However, sequence similarity does not always mean identical function or phenotype, suggesting that new methods are required to functionally annotate newly sequenced species. We have implemented comparative analysis by high-throughput experimental testing of gene dispensability in Saccharomyces uvarum, a sister species of Saccharomyces cerevisiae. We created haploid and heterozygous diploid Tn7 insertional mutagenesis libraries in S. uvarum to identify species-dependent essential genes, with the goal of detecting genes with divergent functions and/or different genetic interactions. Comprehensive gene dispensability comparisons with S. cerevisiae predicted diverged dispensability at 12% of conserved orthologs, and validation experiments confirmed 22 differentially essential genes. Despite their differences in essentiality, these genes were capable of cross-species complementation, demonstrating that trans-acting factors that are background-dependent contribute to differential gene essentiality. This study shows that direct experimental testing of gene disruption phenotypes across species can inform comparative genomic analyses and improve gene annotations. Our method can be widely applied in microorganisms to further our understanding of genome evolution.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Saccharomyces/genética , Ativação Transcricional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutagênese , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Yeast ; 36(12): 685-700, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31423599

RESUMO

Yeasts are essential for many processes, including the production of some of our most beloved foods and beverages. Less is known to the public about the far-reaching impacts of yeasts on other products such as biofuels, pharmaceuticals, and industrial products. By leveraging and combining newly discovered yeast genetic diversity with now affordable and efficient genetic engineering and synthetic biology tools, academic and industrial yeast labs have designed yeast cell factories for a wide range of novel applications such as the production of medicines, components of human breast milk, heme for meat substitutes, bioplastics, and other biomaterials. This review covers the newest technologies developed for yeast research including synthetic biology and their use in the engineering of yeast cell factories for emerging applications.


Assuntos
Engenharia Metabólica , Leveduras/genética , Leveduras/metabolismo , Técnicas Biossensoriais , Vias Biossintéticas/genética , Evolução Molecular Direcionada , Redes Reguladoras de Genes , Variação Genética , Genômica , Biologia Sintética , Leveduras/classificação , Leveduras/crescimento & desenvolvimento
4.
PLoS Genet ; 12(10): e1006339, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27727276

RESUMO

High-throughput sequencing has enabled genetic screens that can rapidly identify mutations that occur during experimental evolution. The presence of a mutation in an evolved lineage does not, however, constitute proof that the mutation is adaptive, given the well-known and widespread phenomenon of genetic hitchhiking, in which a non-adaptive or even detrimental mutation can co-occur in a genome with a beneficial mutation and the combined genotype is carried to high frequency by selection. We approximated the spectrum of possible beneficial mutations in Saccharomyces cerevisiae using sets of single-gene deletions and amplifications of almost all the genes in the S. cerevisiae genome. We determined the fitness effects of each mutation in three different nutrient-limited conditions using pooled competitions followed by barcode sequencing. Although most of the mutations were neutral or deleterious, ~500 of them increased fitness. We then compared those results to the mutations that actually occurred during experimental evolution in the same three nutrient-limited conditions. On average, ~35% of the mutations that occurred during experimental evolution were predicted by the systematic screen to be beneficial. We found that the distribution of fitness effects depended on the selective conditions. In the phosphate-limited and glucose-limited conditions, a large number of beneficial mutations of nearly equivalent, small effects drove the fitness increases. In the sulfate-limited condition, one type of mutation, the amplification of the high-affinity sulfate transporter, dominated. In the absence of that mutation, evolution in the sulfate-limited condition involved mutations in other genes that were not observed previously-but were predicted by the systematic screen. Thus, gross functional screens have the potential to predict and identify adaptive mutations that occur during experimental evolution.


Assuntos
Adaptação Fisiológica/genética , Aptidão Genética , Mutação/genética , Seleção Genética , Código de Barras de DNA Taxonômico , Evolução Molecular Direcionada , Genótipo , Saccharomyces cerevisiae/genética
5.
PLoS Biol ; 13(5): e1002155, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26011532

RESUMO

Aneuploidy is a hallmark of tumor cells, and yet the precise relationship between aneuploidy and a cell's proliferative ability, or cellular fitness, has remained elusive. In this study, we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains, each containing a different telomeric amplicon (Tamp), ranging in size from 0.4 to 1,000 kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific, with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome-wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp's fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations.


Assuntos
Aneuploidia , Evolução Biológica , Aptidão Genética , Telômero , Amplificação de Genes , Pleiotropia Genética , Saccharomyces cerevisiae
6.
PLoS Genet ; 11(12): e1005699, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26700858

RESUMO

DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.


Assuntos
Replicação do DNA , Amplificação de Genes , Sequências Repetidas Invertidas , Modelos Genéticos , Origem de Replicação , Saccharomyces cerevisiae/genética
7.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702776

RESUMO

Evolution is driven by the accumulation of competing mutations that influence survival. A broad form of genetic variation is the amplification or deletion of DNA (≥50 bp) referred to as copy number variation (CNV). In humans, CNV may be inconsequential, contribute to minor phenotypic differences, or cause conditions such as birth defects, neurodevelopmental disorders, and cancers. To identify mechanisms that drive CNV, we monitored the experimental evolution of Saccharomyces cerevisiae populations grown under sulfate-limiting conditions. Cells with increased copy number of the gene SUL1, which encodes a primary sulfate transporter, exhibit a fitness advantage. Previously, we reported interstitial inverted triplications of SUL1 as the dominant rearrangement in a haploid population. Here, in a diploid population, we find instead that small linear fragments containing SUL1 form and are sustained over several generations. Many of the linear fragments are stabilized by de novo telomere addition within a telomere-like sequence near SUL1 (within the SNF5 gene). Using an assay that monitors telomerase action following an induced chromosome break, we show that this region acts as a hotspot of de novo telomere addition and that required sequences map to a region of <250 base pairs. Consistent with previous work showing that association of the telomere-binding protein Cdc13 with internal sequences stimulates telomerase recruitment, mutation of a four-nucleotide motif predicted to associate with Cdc13 abolishes de novo telomere addition. Our study suggests that internal telomere-like sequences that stimulate de novo telomere addition can contribute to adaptation by promoting genomic plasticity.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Sulfatos/metabolismo , Variações do Número de Cópias de DNA , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Telômero/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
8.
Genome Res ; 19(10): 1710-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19592681

RESUMO

The 11.3-Mb genome of the yeast Lachancea (Saccharomyces) kluyveri displays an intriguing compositional heterogeneity: a region of approximately 1 Mb, covering almost the whole left arm of chromosome C (C-left), has an average GC content of 52.9%, which is significantly higher than the 40.4% global GC content of the rest of the genome. This region contains the MAT locus, which remains normal in composition. The excess of GC base pairs affects both coding and noncoding sequences, and thus is not due to selective pressure acting on protein sequences. It leads to a strong codon usage bias and alters the amino acid composition of the 457 proteins encoded on C-left that do not show obvious bias for functional categories, or the presence of paralogs or orthologs of essential genes of Saccharomyces cerevisiae. They share significant synteny conservation with other species of the Saccharomycetaceae, and phylogenetic analysis indicates that C-left originates from a Lachancea species. In contrast, there is a complete absence of transposable elements in C-left, whereas 18 elements per megabase are distributed across the rest of the genome. Comparative hybridization of synchronized cells using high-density genome arrays reveals that C-left is replicated later during S phase than the rest of the genome. Two possible primary causes of this major compositional heterogeneity are discussed: an ancient hybridization of two related species with very distinct GC composition, or an intrinsic mechanism, possibly associated with the loss of the silent cassettes from C-left that progressively increased the GC content and generated the delayed replication of this chromosomal arm.


Assuntos
Composição de Bases/fisiologia , Cromossomos Fúngicos/genética , Período de Replicação do DNA/genética , Saccharomyces/genética , Composição de Bases/genética , Cromossomos Fúngicos/química , Códon/genética , Elementos de DNA Transponíveis/genética , Genoma Fúngico , Dados de Sequência Molecular , Filogenia , Sintenia
9.
Genome Res ; 19(10): 1696-709, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19525356

RESUMO

Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.


Assuntos
Genoma Fúngico , Genômica/métodos , Saccharomycetales/genética , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Eremothecium/genética , Duplicação Gênica , Genes Fúngicos/genética , Inteínas/genética , Kluyveromyces/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , RNA não Traduzido/genética , Saccharomyces/genética , Spliceossomos/metabolismo , Zygosaccharomyces/genética
10.
PLoS Genet ; 4(9): e1000175, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773114

RESUMO

The propensity of segmental duplications (SDs) to promote genomic instability is of increasing interest since their involvement in numerous human genomic diseases and cancers was revealed. However, the mechanism(s) responsible for their appearance remain mostly speculative. Here, we show that in budding yeast, replication accidents, which are most likely transformed into broken forks, play a causal role in the formation of SDs. The Pol32 subunit of the major replicative polymerase Poldelta is required for all SD formation, demonstrating that SDs result from untimely DNA synthesis rather than from unequal crossing-over. Although Pol32 is known to be required for classical (Rad52-dependant) break-induced replication, only half of the SDs can be attributed to this mechanism. The remaining SDs are generated through a Rad52-independent mechanism of template switching between microsatellites or microhomologous sequences. This new mechanism, named microhomology/microsatellite-induced replication (MMIR), differs from all known DNA double-strand break repair pathways, as MMIR-mediated duplications still occur in the combined absence of homologous recombination, microhomology-mediated, and nonhomologous end joining machineries. The interplay between these two replication-based pathways explains important features of higher eukaryotic genomes, such as the strong, but not strict, association between SDs and transposable elements, as well as the frequent formation of oncogenic fusion genes generating protein innovations at SD junctions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Reparo do DNA/genética , Enzimas Reparadoras do DNA , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Duplicação Gênica , Repetições de Microssatélites , Dados de Sequência Molecular , Endonucleases Específicas para DNA e RNA de Cadeia Simples
11.
BMC Genomics ; 11: 88, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20128923

RESUMO

BACKGROUND: Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. RESULTS: We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28x depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5x gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. CONCLUSIONS: This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA/métodos , Algoritmos , Pontos de Quebra do Cromossomo , DNA Fúngico/genética , Evolução Molecular , Dosagem de Genes , Biblioteca Genômica , Mutação Puntual , Polimorfismo de Nucleotídeo Único
13.
Cold Spring Harb Protoc ; 2017(7): pdb.prot089011, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679700

RESUMO

Experimental evolution is one approach used to address a broad range of questions related to evolution and adaptation to strong selection pressures. Experimental evolution of diverse microbial and viral systems has routinely been used to study new traits and behaviors and also to dissect mechanisms of rapid evolution. This protocol describes the practical aspects of experimental evolution with yeast grown in chemostats, including the setup of the experiment and sampling methods as well as best laboratory and record-keeping practices.


Assuntos
Evolução Molecular , Técnicas Microbiológicas/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Adaptação Biológica , Técnicas Microbiológicas/instrumentação , Seleção Genética
14.
Cold Spring Harb Protoc ; 2017(7): pdb.top077610, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679718

RESUMO

Continuous culture provides many benefits over the classical batch style of growing yeast cells. Steady-state cultures allow for precise control of growth rate and environment. Cultures can be propagated for weeks or months in these controlled environments, which is important for the study of experimental evolution. Despite these advantages, chemostats have not become a highly used system, in large part because of their historical impracticalities, including low throughput, large footprint, systematic complexity, commercial unavailability, high cost, and insufficient protocol availability. However, we have developed methods for building a relatively simple, low-cost, small footprint array of chemostats that can be run in multiples of 32. This "ministat array" can be applied to problems in yeast physiology and experimental evolution.


Assuntos
Evolução Molecular , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética
15.
Methods Mol Biol ; 1361: 361-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26483032

RESUMO

Experimental evolution of microbes is a powerful tool to study adaptation to strong selection, the mechanism of evolution and the development of new traits. The development of high-throughput sequencing methods has given researchers a new ability to cheaply and easily identify mutations genome wide that are selected during the course of experimental evolution. Here we provide a protocol for conducting experimental evolution of yeast using chemostats, including fitness measurement and whole genome sequencing of evolved clones or populations collected during the experiment. Depending on the number of generations appropriate for the experiment, the number of samples tested and the sequencing platform, this protocol takes from 1 month to several months to be completed, with the possibility of processing several strains or mutants at once.


Assuntos
Evolução Molecular Direcionada/métodos , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Fúngico , Mutação , Fenótipo , Saccharomyces cerevisiae/genética
16.
Genetics ; 203(1): 191-202, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26936925

RESUMO

In the yeast Saccharomyces cerevisiae, beneficial mutations selected during sulfate-limited growth are typically amplifications of the SUL1 gene, which encodes the high-affinity sulfate transporter, resulting in fitness increases of >35% . Cis-regulatory mutations have not been observed at this locus; however, it is not clear whether this absence is due to a low mutation rate such that these mutations do not arise, or they arise but have limited fitness effects relative to those of amplification. To address this question directly, we assayed the fitness effects of nearly all possible point mutations in a 493-base segment of the gene's promoter through mutagenesis and selection. While most mutations were either neutral or detrimental during sulfate-limited growth, eight mutations increased fitness >5% and as much as 9.4%. Combinations of these beneficial mutations increased fitness only up to 11%. Thus, in the case of SUL1, promoter mutations could not induce a fitness increase similar to that of gene amplification. Using these data, we identified functionally important regions of the SUL1 promoter and analyzed three sites that correspond to potential binding sites for the transcription factors Met32 and Cbf1 Mutations that create new Met32- or Cbf1-binding sites also increased fitness. Some mutations in the untranslated region of the SUL1 transcript decreased fitness, likely due to the formation of inhibitory upstream open reading frames. Our methodology-saturation mutagenesis, chemostat selection, and DNA sequencing to track variants-should be a broadly applicable approach.


Assuntos
Proteínas de Transporte de Ânions/genética , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Aptidão Genética , Mutagênese , Mutação , Motivos de Nucleotídeos , Fases de Leitura Aberta , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Transportadores de Sulfato , Fatores de Transcrição
17.
G3 (Bethesda) ; 4(3): 399-409, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24368781

RESUMO

Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.


Assuntos
Saccharomyces cerevisiae/genética , Adaptação Biológica , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Cinética , Mutação , Conformação de Ácido Nucleico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética , Análise de Sequência de DNA , Transportadores de Sulfato
18.
Genetics ; 195(1): 159-70, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23833183

RESUMO

During mitosis, kinetochores physically link chromosomes to the dynamic ends of spindle microtubules. This linkage depends on the Ndc80 complex, a conserved and essential microtubule-binding component of the kinetochore. As a member of the complex, the Ndc80 protein forms microtubule attachments through a calponin homology domain. Ndc80 is also required for recruiting other components to the kinetochore and responding to mitotic regulatory signals. While the calponin homology domain has been the focus of biochemical and structural characterization, the function of the remainder of Ndc80 is poorly understood. Here, we utilized a new approach that couples high-throughput sequencing to a saturating linker-scanning mutagenesis screen in Saccharomyces cerevisiae. We identified domains in previously uncharacterized regions of Ndc80 that are essential for its function in vivo. We show that a helical hairpin adjacent to the calponin homology domain influences microtubule binding by the complex. Furthermore, a mutation in this hairpin abolishes the ability of the Dam1 complex to strengthen microtubule attachments made by the Ndc80 complex. Finally, we defined a C-terminal segment of Ndc80 required for tetramerization of the Ndc80 complex in vivo. This unbiased mutagenesis approach can be generally applied to genes in S. cerevisiae to identify functional properties and domains.


Assuntos
Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetidas Invertidas , Cinetocoros/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutagênese , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
19.
G3 (Bethesda) ; 1(1): 11-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22384314

RESUMO

High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802(T) and ZP 591), and S. mikatae (IFO 1815(T)), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA