RESUMO
Alzheimer's disease (AD) is the most prevalent type of dementia caused by the accumulation of amyloid beta (Aß) peptides. The extracellular deposition of Aß peptides in human AD brain causes neuronal death. Therefore, it has been found that Aß peptide degradation is a possible therapeutic target for AD. CathD has been known to breakdown amyloid beta peptides. However, the structural role of CathD is not yet clear. Hence, for the purpose of gaining a deeper comprehension of the structure of CathD, the present computational investigation was performed using virtual screening technique to predict CathD's active site residues and substrate binding mode. Ligand-based virtual screening was implemented on small molecules from ZINC database against crystal structure of CathD. Further, molecular docking was utilised to investigate the binding mechanism of CathD with substrates and virtually screened inhibitors. Localised compounds obtained through screening performed by PyRx and AutoDock 4.2 with CathD receptor and the compounds having highest binding affinities were picked as; ZINC00601317, ZINC04214975 and ZINCC12500925 as our top choices. The hydrophobic residues Viz. Gly35, Val31, Thr34, Gly128, Ile124 and Ala13 help stabilising the CathD-ligand complexes, which in turn emphasises substrate and inhibitor selectivity. Further, MM-GBSA approach has been used to calculate binding free energy between CathD and selected compounds. Therefore, it would be beneficial to understand the active site pocket of CathD with the assistance of these discoveries. Thus, the present study would be helpful to identify active site pocket of CathD, which could be beneficial to develop novel therapeutic strategies for the AD.
Assuntos
Catepsina D , Simulação de Acoplamento Molecular , Humanos , Sítios de Ligação , Catepsina D/metabolismo , Catepsina D/química , Ligantes , Doença de Alzheimer/metabolismo , Domínio Catalítico , Ligação Proteica , Modelos MolecularesRESUMO
Vancomycin resistance in enterococci mainly arises due to alteration in terminal peptidoglycan dipeptide. A comprehensive structural analysis for substrate specificity of dipeptide modifying d-Alanine: d-Serine ligase (Ddls) is essential to screen its inhibitors for combating vancomycin resistance. In this study modeled 3D structure of EgDdls from E. gallinarum was used for structure based virtual screening (SBVS) of oxadiazole derivatives. Initially, fifteen oxadiazole derivatives were identified as inhibitors at the active site of EgDdls from PubChem database. Further, four EgDdls inhibitors were evaluated using pharmacokinetic profile and molecular docking. The results of molecular docking showed that oxadiazole inhibitors could bind preferentially at ATP binding pocket with the lowest binding energy. Further, molecular dynamics simulation results showed stable behavior of EgDdls in complex with screened inhibitors. The residues Phe172, Lys174, Glu217, Phe292, and Asn302 of EgDdls were mainly involved in interactions with screened inhibitors. Furthermore, MM-PBSA calculation showed electrostatic and van der Waals interactions mainly contribute to overall binding energy. The PCA analysis showed motion of central domain and omega loop of EgDdls. This is involved in the formation of native dipeptide and stabilized after binding of 2-(1-(Ethylsulfonyl) piperidin-4-yl)-5-(furan-2-yl)-1,3,4-oxadiazole, which could be reason for the inhibition of EgDdls. Hence, in this study we have screened inhibitors of EgDdls which could be useful to alleviate the vancomycin resistance problem in enterococci, involved in hospital-acquired infections, especially urinary tract infections (UTI).
Assuntos
Enterococcus , Vancomicina , Enterococcus/metabolismo , Vancomicina/farmacologia , Vancomicina/química , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Resistência a Vancomicina , Dipeptídeos/metabolismo , Ligases/metabolismo , Proteínas de Bactérias/químicaRESUMO
Amyloid beta (Aß) peptide aggregates rapidly into the soluble oligomers, protofibrils and fibrils to form senile plaques, a neurotoxic component and pathological hallmark of Alzheimer's disease (AD). Experimentally, it has been demonstrated the inhibition of an early stages of Aß aggregation by a dipeptide D-Trp-Aib inhibitor, but its molecular mechanism is still unclear. Hence, in the present study, we used molecular docking and molecular dynamics (MD) simulations to explore the molecular mechanism of inhibition of an early oligomerization and destabilization of preformed Aß protofibril by D-Trp-Aib. Molecular docking study showed that the D-Trp-Aib binds at the aromatic (Phe19, Phe20) region of Aß monomer, Aß fibril and hydrophobic core of Aß protofibril. MD simulations revealed the binding of D-Trp-Aib at the aggregation prone region (Lys16-Glu22) resulted in the stabilization of Aß monomer by π-π stacking interactions between Tyr10 and indol ring of D-Trp-Aib, which decreases the ß-sheet content and increases the α-helices. The interaction between Lys28 of Aß monomer to D-Trp-Aib could be responsible to block the initial nucleation and may impede the fibril growth and elongation. The loss of hydrophobic contacts between two ß-sheets of Aß protofibril upon binding of D-Trp-Aib at the hydrophobic cavity resulted in the partial opening of ß-sheets. This also disrupts a salt bridge (Asp23-Lys28) leading to the destabilization of Aß protofibril. Binding energy calculations revealed that van der Waals and electrostatic interactions maximally favours the binding of D-Trp-Aib to Aß monomer and Aß protofibril respectively. The residues Tyr10, Phe19, Phe20, Ala21, Glu22, Lys28 of Aß monomer, whereas Leu17, Val18, Phe19, Val40, Ala42 of protofibril contributing for the interactions with D-Trp-Aib. Thus, the present study provides structural insights into the inhibition of an early oligomerization of Aß peptides and destabilization of Aß protofibril, which could be useful to design novel inhibitors for the treatment of AD.