Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Plant Cell Physiol ; 64(5): 474-485, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36715091

RESUMO

Shade avoidance syndrome (SAS) is a strategy of major adaptive significance and typically includes elongation of the stem and petiole, leaf hyponasty, reduced branching and phototropic orientation of the plant shoot toward canopy gaps. Both cryptochrome 1 and phytochrome B (phyB) are the major photoreceptors that sense the reduction in the blue light fluence rate and the low red:far-red ratio, respectively, and both light signals are associated with plant density and the resource reallocation when SAS responses are triggered. The B-box (BBX)-containing zinc finger transcription factor BBX24 has been implicated in the SAS as a regulator of DELLA activity, but this interaction does not explain all the observed BBX24-dependent regulation in shade light. Here, through a combination of transcriptional meta-analysis and large-scale identification of BBX24-interacting transcription factors, we found that JAZ3, a jasmonic acid signaling component, is a direct target of BBX24. Furthermore, we demonstrated that joint loss of BBX24 and JAZ3 function causes insensitivity to DELLA accumulation, and the defective shade-induced elongation in this mutant is rescued by loss of DELLA or phyB function. Therefore, we propose that JAZ3 is part of the regulatory network that controls the plant growth in response to shade, through a mechanism in which BBX24 and JAZ3 jointly regulate DELLA activity. Our results provide new insights into the participation of BBX24 and JA signaling in the hypocotyl shade avoidance response in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fitocromo B/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Chem Inf Model ; 63(2): 507-521, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36594600

RESUMO

Electrophilicity (E) is one of the most important parameters to understand the reactivity of an organic molecule. Although the theoretical electrophilicity index (ω) has been associated with E in a small homologous series, the use of w to predict E in a structurally heterogeneous set of compounds is not a trivial task. In this study, a robust ensemble model is created using Mayr's database of reactivity parameters. A combination of topological and quantum mechanical descriptors and different machine learning algorithms are employed for the model's development. The predictability of the model is assessed using different statistical parameters, and its validation is examined, including a training/test partition, an applicability domain, and a y-scrambling test. The global ensemble model presents a Q5-fold2 of 0.909 and a Qext2 of 0.912, demonstrating an excellent predictability performance of E values and showing that w is not a good descriptor for the prediction of E, especially for the case of neutral compounds. ElectroPredictor, a noncommercial Python application (https://github.com/mmoreno1/ElectroPredictor), is developed to predict E. QM9, a well-known large dataset containing 133885 neutral molecules, is used to perform a virtual screening (94.0% coverage). Finally, the 10 most electrophilic molecules are analyzed as possible new Mayr's electrophiles, which have not yet been experimentally tested. This study confirms the necessity to build an ensemble model using nonlinear machine learning algorithms, topographic descriptors, and separating molecules into charged and neutral compounds to predict E with precision.


Assuntos
Algoritmos , Aprendizado de Máquina , Bases de Dados Factuais
3.
Future Oncol ; 19(12): 855-862, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37170813

RESUMO

The evolution of palliative care in Latin America has been slow compared with other parts of the world, especially developed countries. Current data show inequality in the development of palliative care in the region and those differences are also evident within countries between urban and rural populations. Peru is situated in the low-ranking group in terms of palliative care services in Latin America. The main reasons are a lack of education and funding and misconceptions about palliative care. Limited access to the use of opioids and regulatory barriers are also common features. The development of more palliative care units in Peru, as well as in other Latin American countries, is needed to ensure access to adequate and timely treatment for patients receiving palliative care.


Assuntos
Analgésicos Opioides , Cuidados Paliativos , Humanos , América Latina , Peru , Analgésicos Opioides/uso terapêutico , População Rural
4.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206795

RESUMO

In this study, the degradation mechanism of chloroacetanilide herbicides in the presence of four different nucleophiles, namely: Br-, I-, HS-, and S2O3-2, was theoretically evaluated using the dispersion-corrected hybrid functional wB97XD and the DGDZVP as a basis set. The comparison of computed activation energies with experimental data shows an excellent correlation (R2 = 0.98 for alachlor and 0.97 for propachlor). The results suggest that the best nucleophiles are those where a sulfur atom performs the nucleophilic attack, whereas the other species are less reactive. Furthermore, it was observed that the different R groups of chloroacetanilide herbicides have a negligible effect on the activation energy of the process. Further insights into the mechanism show that geometrical changes and electronic rearrangements contribute 60% and 40% of the activation energy, respectively. A deeper analysis of the reaction coordinate was conducted, employing the evolution chemical potential, hardness, and electrophilicity index, as well as the electronic flux. The charge analysis shows that the electron density of chlorine increases as the nucleophilic attack occurs. Finally, NBO analysis indicates that the nucleophilic substitution in chloroacetanilides is an asynchronous process with a late transition state for all models except for the case of the iodide attack, which occurs through an early transition state in the reaction.


Assuntos
Acetamidas/química , Teoria da Densidade Funcional , Enxofre/química
5.
Anal Bioanal Chem ; 411(19): 4709-4720, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30317445

RESUMO

The mechanism of self-recognition of the autoantigen TROVE2, a common biomarker in autoimmune diseases, has been studied with a quartz crystal microbalance with dissipation monitoring (QCM-D) and dual polarization interferometry (DPI). The complementarity and remarkable analytical features of both techniques has allowed new insights into the onset of systemic lupus erythematosus (SLE) to be achieved at the molecular level. The in vitro study for SLE patients and healthy subjects suggests that anti-TROVE2 autoantibodies may undergo an antibody bipolar bridging. An epitope-paratope-specific binding initially occurs to activate a hidden Fc receptor in the TROVE2 tertiary structure. This bipolar mechanism may contribute to the pathogenic accumulation of anti-TROVE2 autoantibody immune complex in autoimmune disease. Furthermore, the specific calcium-dependent protein-protein bridges point out at how the TRIM21/TROVE2 association might occur, suggesting that the TROVE2 protein could stimulate the intracellular immune signaling via the TRIM21 PRY-SPRY domain. These findings may help to better understand the origins of the specificity and affinity of TROVE2 interactions, which might play a key role in the SLE pathogenesis. This manuscript gives one of the first practical applications of two novel functions (-df/dD and Δh/molec) for the analysis of the data provided by QCM-D and DPI. In addition, it is the first time that QCM-D has been used for mapping hidden Fc receptors as well as linear epitopes in a protein tertiary structure. Graphical abstract ᅟ.


Assuntos
Autoantígenos/fisiologia , Interferometria/métodos , Lúpus Eritematoso Sistêmico/imunologia , Técnicas de Microbalança de Cristal de Quartzo , RNA Citoplasmático Pequeno/fisiologia , Ribonucleoproteínas/fisiologia , Autoanticorpos/imunologia , Autoantígenos/química , Autoantígenos/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Conformação Proteica , RNA Citoplasmático Pequeno/química , RNA Citoplasmático Pequeno/imunologia , Ribonucleoproteínas/química , Ribonucleoproteínas/imunologia
6.
Arch Toxicol ; 90(10): 2531-62, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27439414

RESUMO

The GRACE (GMO Risk Assessment and Communication of Evidence; www.grace-fp7.eu ) project was funded by the European Commission within the 7th Framework Programme. A key objective of GRACE was to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of a 1-year feeding trial with a GM maize MON810 variety, its near-isogenic non-GM comparator and an additional conventional maize variety are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 452. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after a chronic exposure.


Assuntos
Ração Animal , Alimentos Geneticamente Modificados/toxicidade , Nível de Saúde , Plantas Geneticamente Modificadas/toxicidade , Zea mays/genética , Ração Animal/normas , Ração Animal/toxicidade , Animais , Feminino , Masculino , Ratos Endogâmicos , Medição de Risco , Testes de Toxicidade Crônica
7.
Plant Physiol ; 164(3): 1237-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24406791

RESUMO

A transcriptomic approach has been used to identify genes predominantly expressed in maize (Zea mays) scutellum during maturation. One of the identified genes is oil body associated protein1 (obap1), which is transcribed during seed maturation predominantly in the scutellum, and its expression decreases rapidly after germination. Proteins similar to OBAP1 are present in all plants, including primitive plants and mosses, and in some fungi and bacteria. In plants, obap genes are divided in two subfamilies. Arabidopsis (Arabidopsis thaliana) genome contains five genes coding for OBAP proteins. Arabidopsis OBAP1a protein is accumulated during seed maturation and disappears after germination. Agroinfiltration of tobacco (Nicotiana benthamiana) epidermal leaf cells with fusions of OBAP1 to yellow fluorescent protein and immunogold labeling of embryo transmission electron microscopy sections showed that OBAP1 protein is mainly localized in the surface of the oil bodies. OBAP1 protein was detected in the oil body cellular fraction of Arabidopsis embryos. Deletion analyses demonstrate that the most hydrophilic part of the protein is responsible for the oil body localization, which suggests an indirect interaction of OBAP1 with other proteins in the oil body surface. An Arabidopsis mutant with a transfer DNA inserted in the second exon of the obap1a gene and an RNA interference line against the same gene showed a decrease in the germination rate, a decrease in seed oil content, and changes in fatty acid composition, and their embryos have few, big, and irregular oil bodies compared with the wild type. Taken together, our findings suggest that OBAP1 protein is involved in the stability of oil bodies.


Assuntos
Arabidopsis/metabolismo , Estruturas Citoplasmáticas/metabolismo , Evolução Molecular , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Western Blotting , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutagênese Insercional/genética , Tamanho do Órgão , Proteínas de Plantas/genética , Transporte Proteico , Interferência de RNA , Sementes/metabolismo , Sementes/ultraestrutura , Frações Subcelulares/metabolismo , Zea mays/genética
8.
Plant Biotechnol J ; 12(1): 81-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102775

RESUMO

Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, are valuable as novel therapeutics and preservatives. However, they tend to be toxic when expressed at high levels as recombinant peptides in plants, and they can be difficult to detect and isolate from complex plant tissues because they are strongly cationic and display low extinction coefficient and extremely limited immunogenicity. We therefore expressed BP100 with a C-terminal tag which preserved its antimicrobial activity and demonstrated significant accumulation in plant cells. We used a fluorescent tag to trace BP100 following transiently expression in Nicotiana benthamiana leaves and showed that it accumulated in large vesicles derived from the endoplasmic reticulum (ER) along with typical ER luminal proteins. Interestingly, the formation of these vesicles was induced by BP100. Similar vesicles formed in stably transformed Arabidopsis thaliana seedlings, but the recombinant peptide was toxic to the host during latter developmental stages. This was avoided by selecting active BP100 derivatives based on their low haemolytic activity even though the selected peptides remained toxic to plant cells when applied exogenously at high doses. Using this strategy, we generated transgenic rice lines producing active BP100 derivatives with a yield of up to 0.5% total soluble protein.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Retículo Endoplasmático/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
9.
Arch Toxicol ; 88(12): 2289-314, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270621

RESUMO

The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu ) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event.


Assuntos
Ração Animal , Alimentos Geneticamente Modificados/toxicidade , Plantas Geneticamente Modificadas/toxicidade , Zea mays/genética , Administração Oral , Ração Animal/normas , Ração Animal/toxicidade , Animais , Peso Corporal , Qualidade de Produtos para o Consumidor , Dieta , Feminino , Masculino , Tamanho do Órgão , Ratos Endogâmicos , Projetos de Pesquisa , Medição de Risco , Testes de Toxicidade Subcrônica
10.
Genes (Basel) ; 14(7)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37510242

RESUMO

Pseudomonas is a bacterial genus with some saprophytic species from land and others associated with opportunistic infections in humans and animals. Factors such as pathogenicity or metabolic aspects have been related to CRISPR-Cas, and in silico studies into it have focused more on the clinical and non-environmental setting. This work aimed to perform an in silico analysis of the CRISPR-Cas systems present in Pseudomonas genomes. It analyzed 275 complete genomic sequences of Pseudomonas taken from the NCBI database. CRISPR loci were obtained from CRISPRdb. The genes associated with CRISPR (cas) and CAS proteins, and the origin and diversity of spacer sequences, were identified and compared by BLAST. The presence of self-targeting sequences, PAMs, and the conservation of DRs were visualized using WebLogo 3.6. The CRISPR-like RNA secondary structure prediction was analyzed using RNAFold and MFold. CRISPR structures were identified in 19.6% of Pseudomonas species. In all, 113 typical CRISPR arrays with 18 putative cas were found, as were 2050 spacers, of which 52% showed homology to bacteriophages, 26% to chromosomes, and 22% to plasmids. No potential self-targeting was detected within the CRISPR array. All the found DRs can form thermodynamically stable secondary RNA structures. The comparison of the CRISPR/Cas system can help understand the environmental adaptability of each evolutionary lineage of clinically and environmentally relevant species, providing data support for bacterial typing, traceability, analysis, and exploration of unconventional CRISPR.


Assuntos
Sistemas CRISPR-Cas , Genoma Bacteriano , Humanos , Sistemas CRISPR-Cas/genética , Pseudomonas/genética , Plasmídeos , RNA
11.
ACS Omega ; 8(12): 10690-10712, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008123

RESUMO

We have studied the nonlinear absorptive and dispersive responses considering a molecular system consisting of two-levels, where aspects of the vibrational internal structure and intramolecular coupling are inserted, in addition to the considerations of interaction with the thermal reservoir. The Born-Oppenheimer electronic energy curve for this molecular model consists of two-intercrossing harmonic oscillator potentials with minima displaced in energy and nuclear coordinate. The results obtained show how these optical responses are sensitive to explicit considerations of both intramolecular coupling and the presence of the solvent through their stochastic interaction. Our study shows that the permanent dipoles of the system and the transition dipoles induced by electromagnetic field effects represent critical quantities for the analysis. The solvent action in our model is treated through the natural Bohr frequency shift to a time-dependent function, with explicit manifestations in its comparison as if the upper state were broadened. Significant variations in the nonlinear optical properties for cases of perturbative and saturative treatments, relaxation times, and optical propagation, mainly due to changes in the probe and pump intensities, are studied. Our studies relating the intramolecular effects with those generated by the presence of the solvent and its stochastic interaction with the solute of study, have allowed not only to analyze the influence of these in the profile of the optical responses, but they could also provide some insights into the analysis and characterization of molecular systems through nonlinear optical properties.

12.
ACS Omega ; 8(8): 7302-7318, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873006

RESUMO

ClpXP complex is an ATP-dependent mitochondrial matrix protease that binds, unfolds, translocates, and subsequently degrades specific protein substrates. Its mechanisms of operation are still being debated, and several have been proposed, including the sequential translocation of two residues (SC/2R), six residues (SC/6R), and even long-pass probabilistic models. Therefore, it has been suggested to employ biophysical-computational approaches that can determine the kinetics and thermodynamics of the translocation. In this sense, and based on the apparent inconsistency between structural and functional studies, we propose to apply biophysical approaches based on elastic network models (ENM) to study the intrinsic dynamics of the theoretically most probable hydrolysis mechanism. The proposed models ENM suggest that the ClpP region is decisive for the stabilization of the ClpXP complex, contributing to the flexibility of the residues adjacent to the pore, favoring the increase in pore size and, therefore, with the energy of interaction of its residues with a larger portion of the substrate. It is predicted that the complex may undergo a stable configurational change once assembled and that the deformability of the system once assembled is oriented, to increase the rigidity of the domains of each region (ClpP and ClpX) and to gain flexibility of the pore. Our predictions could suggest under the conditions of this study the mechanism of the interaction of the system, of which the substrate passes through the unfolding of the pore in parallel with a folding of the bottleneck. The variations in the distance calculated by molecular dynamics could allow the passage of a substrate with a size equivalent to ∼3 residues. The theoretical behavior of the pore and the stability and energy of binding to the substrate based on ENM models suggest that in this system, there are thermodynamic, structural, and configurational conditions that allow a possible translocation mechanism that is not strictly sequential.

13.
Int J Biol Macromol ; 244: 125113, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37257544

RESUMO

The coupling of Cas9 and its inhibitor AcrIIC3, both from the bacterium Neisseria meningitidis (Nme), form a homodimer of the (NmeCas9/AcrIIC3)2 type. This coupling was studied to assess the impact of their interaction with the crowders in the following environments: (1) homogeneous crowded, (2) heterogeneous, and (3) microheterogeneous cytoplasmic. For this, statistical thermodynamic models based on the scaled particle theory (SPT) were used, considering the attractive and repulsive protein-crowders contributions and the stability of the formation of spherocylindrical homodimers and the effects of changes in the size of spherical dimers were estimated. Studies based on models of dynamics, elastic networks, and statistical potentials to the formation of complexes NmeCas9/AcrIIC3 using PEG as the crowding agent support the predictions from SPT. Macromolecular crowding stabilizes the formation of the dimers, being more significant when the attractive protein-crowder interactions are weaker and the crowders are smaller. The coupling is favored towards the formation of spherical and compact dimers due to crowding addition (excluded-volume effects) and the thermodynamic stability of the dimers is markedly dependent on the size of the crowders. These results support the experimental mechanistic proposal of inhibition of NmeCas9 mediated by AcrIIC3.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Substâncias Macromoleculares , Polímeros , Termodinâmica
14.
JACS Au ; 3(3): 628-656, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006755

RESUMO

Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics.

16.
Pharmaceutics ; 14(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35213965

RESUMO

Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic ß-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to construct models to identify possible FFA1 agonists by applying four different machine-learning algorithms. The best model (M2) meets the Tropsha's test requirements and has the statistics parameters R2 = 0.843, Q2CV = 0.785, and Q2ext = 0.855. Also, coverage of 100% of the test set based on the applicability domain analysis was obtained. Furthermore, a deep analysis based on the ADME predictions, molecular docking, and molecular dynamics simulations was performed. The lipophilicity and the residue interactions were used as relevant criteria for selecting a candidate from the screening of the DiaNat and DrugBank databases. Finally, the FDA-approved drugs bilastine, bromfenac, and fenofibric acid are suggested as potential and lead FFA1 agonists.

17.
Heliyon ; 8(9): e10560, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36325428

RESUMO

Introduction: The release of metallic ions from orthodontic brackets and wires typically depends on their quality (chemical composition) and the medium to which they are exposed, e.g., acidic, alkaline, substances with a high fluoride concentration, etc. This review examines corrosion and wear of orthodontic brackets, wires, and arches exposed to different media, including: beverages (juices), mouthwashes and artificial saliva among others, and the possible health effects resulting from the release of metallic ions under various conditions. Objective: This review aims to determine the exposure conditions that cause the most wear on orthodontic devices, as well as the possible health effects that can be caused by the release of metallic ions under various conditions. Sources: A search was carried out in the Scopus database, for articles related to oral media that can corrode brackets and wires. The initial research resulted in 8,127 documents, after applying inclusion and exclusion criteria, 76 articles remained. Conclusion: Stainless steel, which is commonly used in orthodontic devices, is the material that suffers the most wear. It was also found that acidic pH, alcohols, fluorides, and chlorides worsen orthodontic material corrosion. Further, nickel released from brackets and wires can cause allergic reactions and gingival overgrowth into patients.

18.
Sci Rep ; 12(1): 19969, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402831

RESUMO

Primary hyperoxaluria type 1 (PHT1) treatment is mainly focused on inhibiting the enzyme glycolate oxidase, which plays a pivotal role in the production of glyoxylate, which undergoes oxidation to produce oxalate. When the renal secretion capacity exceeds, calcium oxalate forms stones that accumulate in the kidneys. In this respect, detailed QSAR analysis, molecular docking, and dynamics simulations of a series of inhibitors containing glycolic, glyoxylic, and salicylic acid groups have been performed employing different regression machine learning techniques. Three robust models with less than 9 descriptors-based on a tenfold cross (Q2 CV) and external (Q2 EXT) validation-were found i.e., MLR1 (Q2 CV = 0.893, Q2 EXT = 0.897), RF1 (Q2 CV = 0.889, Q2 EXT = 0.907), and IBK1 (Q2 CV = 0.891, Q2 EXT = 0.907). An ensemble model was built by averaging the predicted pIC50 of the three models, obtaining a Q2 EXT = 0.933. Physicochemical properties such as charge, electronegativity, hardness, softness, van der Waals volume, and polarizability were considered as attributes to build the models. To get more insight into the potential biological activity of the compouds studied herein, docking and dynamic analysis were carried out, finding the hydrophobic and polar residues show important interactions with the ligands. A screening of the DrugBank database V.5.1.7 was performed, leading to the proposal of seven commercial drugs within the applicability domain of the models, that can be suggested as possible PHT1 treatment.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Oxirredutases do Álcool
19.
Antibiotics (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671262

RESUMO

In this study, a series of novel quinolinone-based thiosemicarbazones were designed in silico and their activities tested in vitro against Mycobacterium tuberculosis (M. tuberculosis). Quantitative structure-activity relationship (QSAR) studies were performed using quinolinone and thiosemicarbazide as pharmacophoric nuclei; the best model showed statistical parameters of R2 = 0.83; F = 47.96; s = 0.31, and was validated by several different methods. The van der Waals volume, electron density, and electronegativity model results suggested a pivotal role in antituberculosis (anti-TB) activity. Subsequently, from this model a new series of quinolinone-thiosemicarbazone 11a-e was designed and docked against two tuberculosis protein targets: enoyl-acyl carrier protein reductase (InhA) and decaprenylphosphoryl-ß-D-ribose-2'-oxidase (DprE1). Molecular dynamics simulation over 200 ns showed a binding energy of -71.3 to -12.7 Kcal/mol, suggesting likely inhibition. In vitro antimycobacterial activity of quinolinone-thiosemicarbazone for 11a-e was evaluated against M. bovis, M. tuberculosis H37Rv, and six different strains of drug-resistant M. tuberculosis. All compounds exhibited good to excellent activity against all the families of M. tuberculosis. Several of the here synthesized compounds were more effective than the standard drugs (isoniazid, oxafloxacin), 11d and 11e being the most active products. The results suggest that these compounds may contribute as lead compounds in the research of new potential antimycobacterial agents.

20.
Comput Biol Chem ; 99: 107692, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35640480

RESUMO

The COVID-19 pandemic has accelerated the study of drugs, most notably ivermectin and more recently Paxlovid (PF-07321332) which is in phase III clinical trials with experimental data showing covalent binding to the viral protease Mpro. Theoretical developments of catalytic site-directed docking support thermodynamically feasible non-covalent binding to Mpro. Here we show that Paxlovid binds non-covalently at regions other than the catalytic sites with energies stronger than reported and at the same binding site as the ivermectin B1a homologue, all through theoretical methodologies, including blind docking. We volumetrically characterize the non-covalent interaction of the ivermectin homologues (avermectins B1a and B1b) and Paxlovid with the mMpro monomer, through molecular dynamics and scaled particle theory (SPT). Using the fluctuation-dissipation theorem (FDT), we estimated the electric dipole moment fluctuations at the surface of each of complex involved in this study, with similar trends to that observed in the interaction volume. Using fluctuations of the intrinsic volume and the number of flexible fragments of proteins using anisotropic and Gaussian elastic networks (ANM+GNM) suggests the complexes with ivermectin are more dynamic and flexible than the unbound monomer. In contrast, the binding of Paxlovid to mMpro shows that the mMpro-PF complex is the least structurally dynamic of all the species measured in this investigation. The results support a differential molecular mechanism of the ivermectin and PF homologues in the mMpro monomer. Finally, the results showed that Paxlovid despite beingbound in different sites through covalent or non-covalent forms behaves similarly in terms of its structural flexibility and volumetric behaviour.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/química , Combinação de Medicamentos , Humanos , Ivermectina , Lactamas , Leucina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrilas , Pandemias , Peptídeo Hidrolases/metabolismo , Prolina , Inibidores de Proteases/química , Ritonavir , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA