Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
EMBO Rep ; 25(2): 853-875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182815

RESUMO

Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.


Assuntos
Pirofosfatases , Sódio , Pirofosfatases/química , Pirofosfatases/metabolismo , Membranas/metabolismo , Catálise , Sódio/química , Sódio/metabolismo
2.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848551

RESUMO

We present millisecond quantitative serial X-ray crystallography at 1.7 Å resolution demonstrating precise optical control of reversible population transfer from Trans-Cis and Cis-Trans photoisomerization of a reversibly switchable fluorescent protein, rsKiiro. Quantitative results from the analysis of electron density differences, extrapolated structure factors, and occupancy refinements are shown to correspond to optical measurements of photoinduced population transfer and have sensitivity to a few percent in concentration differences. Millisecond time-resolved concentration differences are precisely and reversibly controlled through intense continuous wave laser illuminations at 405 and 473 nm for the Trans-to-Cis and Cis-to-Trans reactions, respectively, while the X-ray crystallographic measurement and laser illumination of the metastable Trans chromophore conformation causes partial thermally driven reconversion across a 91.5 kJ/mol thermal barrier from which a temperature jump between 112 and 128 K is extracted.

3.
Nat Methods ; 16(10): 979-982, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527838

RESUMO

We introduce a liquid application method for time-resolved analyses (LAMA), an in situ mixing approach for serial crystallography. Picoliter-sized droplets are shot onto chip-mounted protein crystals, achieving near-full ligand occupancy within theoretical diffusion times. We demonstrate proof-of-principle binding of GlcNac to lysozyme, and resolve glucose binding and subsequent ring opening in a time-resolved study of xylose isomerase.


Assuntos
Cristalografia/métodos , Síncrotrons , Acetilglucosamina/química , Aldose-Cetose Isomerases/química , Glucose/química , Muramidase/química , Estudo de Prova de Conceito
4.
Phys Chem Chem Phys ; 24(34): 20336-20347, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35980136

RESUMO

Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the D-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that D-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns-ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers.


Assuntos
Ácido Aspártico , Carboxiliases/metabolismo , Serina , Difusão , Escherichia coli , Ligantes , Modelos Moleculares
5.
J Synchrotron Radiat ; 27(Pt 2): 360-370, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153274

RESUMO

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.

6.
Proc Natl Acad Sci U S A ; 114(10): 2610-2615, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28196894

RESUMO

Natural enzymes are constructed from the 20 proteogenic amino acids, which may then require posttranslational modification or the recruitment of coenzymes or metal ions to achieve catalytic function. Here, we demonstrate that expansion of the alphabet of amino acids can also enable the properties of enzymes to be extended. A chemical mutagenesis strategy allowed a wide range of noncanonical amino acids to be systematically incorporated throughout an active site to alter enzymic substrate specificity. Specifically, 13 different noncanonical side chains were incorporated at 12 different positions within the active site of N-acetylneuraminic acid lyase (NAL), and the resulting chemically modified enzymes were screened for activity with a range of aldehyde substrates. A modified enzyme containing a 2,3-dihydroxypropyl cysteine at position 190 was identified that had significantly increased activity for the aldol reaction of erythrose with pyruvate compared with the wild-type enzyme. Kinetic investigation of a saturation library of the canonical amino acids at the same position showed that this increased activity was not achievable with any of the 20 proteogenic amino acids. Structural and modeling studies revealed that the unique shape and functionality of the noncanonical side chain enabled the active site to be remodeled to enable more efficient stabilization of the transition state of the reaction. The ability to exploit an expanded amino acid alphabet can thus heighten the ambitions of protein engineers wishing to develop enzymes with new catalytic properties.


Assuntos
Catálise , Domínio Catalítico/genética , Oxo-Ácido-Liases/genética , Especificidade por Substrato/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Estabilidade Enzimática/genética , Cinética , Mutagênese Sítio-Dirigida , Oxo-Ácido-Liases/química
7.
J Am Chem Soc ; 141(13): 5211-5219, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856321

RESUMO

The self-assembly of proteins into higher order structures is ubiquitous in living systems. It is also an essential process for the bottom-up creation of novel molecular architectures and devices for synthetic biology. However, the complexity of protein-protein interaction surfaces makes it challenging to mimic natural assembly processes in artificial systems. Indeed, many successful computationally designed protein assemblies are prescreened for "designability", limiting the choice of components. Here, we report a simple and pragmatic strategy to assemble chosen multisubunit proteins into more complex structures. A coiled-coil domain appended to one face of the pentameric cholera toxin B-subunit (CTB) enabled the ordered assembly of tubular supra-molecular complexes. Analysis of a tubular structure determined by X-ray crystallography has revealed a hierarchical assembly process that displays features reminiscent of the polymorphic assembly of polyomavirus proteins. The approach provides a simple and straightforward method to direct the assembly of protein building blocks which present either termini on a single face of an oligomer. This scaffolding approach can be used to generate bespoke supramolecular assemblies of functional proteins. Additionally, structural resolution of the scaffolded assemblies highlight "native-state" forced protein-protein interfaces, which may prove useful as starting conformations for future computational design.


Assuntos
Toxina da Cólera/química , Proteínas/química , Algoritmos , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
8.
Biochemistry ; 57(36): 5301-5314, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110143

RESUMO

Copper amine oxidases (CuAOs) are metalloenzymes that reduce molecular oxygen to hydrogen peroxide during catalytic turnover of primary amines. In addition to Cu2+ in the active site, two peripheral calcium sites, ∼32 Šfrom the active site, have roles in Escherichia coli amine oxidase (ECAO). The buried Ca2+ (Asp533, Leu534, Asp535, Asp678, and Ala679) is essential for full-length protein production, while the surface Ca2+ (Glu573, Tyr667, Asp670, and Glu672) modulates biogenesis of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor. The E573Q mutation at the surface site prevents calcium binding and TPQ biogenesis. However, TPQ biogenesis can be restored by a suppressor mutation (I342F) in the proposed oxygen delivery channel to the active site. While supporting TPQ biogenesis (∼60% WTECAO TPQ), I342F/E573Q has almost no amine oxidase activity (∼4.6% WTECAO activity). To understand how these long-range mutations have major effects on TPQ biogenesis and catalysis, we employed ultraviolet-visible spectroscopy, steady-state kinetics, inhibition assays, and X-ray crystallography. We show that the surface metal site controls the equilibrium (disproportionation) of the Cu2+-substrate reduced TPQ (TPQAMQ) Cu+-TPQ semiquinone (TPQSQ) couple. Removal of the calcium ion from this site by chelation or mutagenesis shifts the equilibrium to Cu2+-TPQAMQ or destabilizes Cu+-TPQSQ. Crystal structure analysis shows that TPQ biogenesis is stalled at deprotonation in the Cu2+-tyrosinate state. Our findings support WTECAO using the inner sphere electron transfer mechanism for oxygen reduction during catalysis, and while a Cu+-tyrosyl radical intermediate is not essential for TPQ biogenesis, it is required for efficient biogenesis.


Assuntos
Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Cobre/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Amina Oxidase (contendo Cobre)/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Espécies Reativas de Oxigênio/química
9.
Biochemistry ; 56(37): 4931-4939, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28832133

RESUMO

The antimetabolite pentyl pantothenamide has broad spectrum antibiotic activity but exhibits enhanced activity against Escherichia coli. The PanDZ complex has been proposed to regulate the pantothenate biosynthetic pathway in E. coli by limiting the supply of ß-alanine in response to coenzyme A concentration. We show that formation of such a complex between activated aspartate decarboxylase (PanD) and PanZ leads to sequestration of the pyruvoyl cofactor as a ketone hydrate and demonstrate that both PanZ overexpression-linked ß-alanine auxotrophy and pentyl pantothenamide toxicity are due to formation of this complex. This both demonstrates that the PanDZ complex regulates pantothenate biosynthesis in a cellular context and validates the complex as a target for antibiotic development.


Assuntos
Acetilcoenzima A/metabolismo , Carboxiliases/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutamato Descarboxilase/metabolismo , Modelos Moleculares , Acetilcoenzima A/análogos & derivados , Acetilcoenzima A/química , Substituição de Aminoácidos , Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Sítios de Ligação , Calorimetria , Carboxiliases/química , Carboxiliases/genética , Coenzima A/síntese química , Coenzima A/química , Coenzima A/metabolismo , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Deleção de Genes , Glutamato Descarboxilase/antagonistas & inibidores , Glutamato Descarboxilase/química , Glutamato Descarboxilase/genética , Cinética , Mutação , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/farmacologia , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Titulometria
10.
Anal Chem ; 89(17): 8844-8852, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28726379

RESUMO

Cys accessibility and quantitative intact mass spectrometry (MS) analyses have been devised to study the topological transitions of Mhp1, the membrane protein for sodium-linked transport of hydantoins from Microbacterium liquefaciens. Mhp1 has been crystallized in three forms (outward-facing open, outward-facing occluded with substrate bound, and inward-facing open). We show that one natural cysteine residue, Cys327, out of three, has an enhanced solvent accessibility in the inward-facing (relative to the outward-facing) form. Reaction of the purified protein, in detergent, with the thiol-reactive N-ethylmalemide (NEM), results in modification of Cys327, suggesting that Mhp1 adopts predominantly inward-facing conformations. Addition of either sodium ions or the substrate 5-benzyl-l-hydantoin (L-BH) does not shift this conformational equilibrium, but systematic co-addition of the two results in an attenuation of labeling, indicating a shift toward outward-facing conformations that can be interpreted using conventional enzyme kinetic analyses. Such measurements can afford the Km for each ligand as well as the stoichiometry of ion-substrate-coupled conformational changes. Mutations that perturb the substrate binding site either result in the protein being unable to adopt outward-facing conformations or in a global destabilization of structure. The methodology combines covalent labeling, mass spectrometry, and kinetic analyses in a straightforward workflow applicable to a range of systems, enabling the interrogation of changes in a protein's conformation required for function at varied concentrations of substrates, and the consequences of mutations on these conformational transitions.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Espectrometria de Massas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cisteína/química , Etilmaleimida/química , Hidantoínas/química , Hidantoínas/metabolismo , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Micrococcaceae/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Sódio/química , Sódio/metabolismo , Especificidade por Substrato
11.
Nat Methods ; 11(11): 1131-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282611

RESUMO

We describe a method for performing time-resolved X-ray crystallographic experiments based on the Hadamard transform, in which time resolution is defined by the underlying periodicity of the probe pulse sequence, and signal/noise is greatly improved over that for the fastest pump-probe experiments depending on a single pulse. This approach should be applicable on standard synchrotron beamlines and will enable high-resolution measurements of protein and small-molecule structural dynamics. It is also applicable to other time-resolved measurements where a probe can be encoded, such as pump-probe spectroscopy.


Assuntos
Cristalografia por Raios X/métodos , Proteínas de Plantas/química , Conformação Proteica , Razão Sinal-Ruído , Fatores de Tempo
12.
Org Biomol Chem ; 14(1): 105-12, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26537532

RESUMO

The catalysis of reactions involving fluoropyruvate as donor by N-acetyl neuraminic acid lyase (NAL) variants was investigated. Under kinetic control, the wild-type enzyme catalysed the reaction between fluoropyruvate and N-acetyl mannosamine to give a 90 : 10 ratio of the (3R,4R)- and (3S,4R)-configured products; after extended reaction times, equilibration occurred to give a 30 : 70 mixture of these products. The efficiency and stereoselectivity of reactions of a range of substrates catalysed by the E192N, E192N/T167V/S208V and E192N/T167G NAL variants were also studied. Using fluoropyruvate and (2R,3S)- or (2S,3R)-2,3-dihydroxy-4-oxo-N,N-dipropylbutanamide as substrates, it was possible to obtain three of the four possible diastereomeric products; for each product, the ratio of anomeric and pyranose/furanose forms was determined. The crystal structure of S. aureus NAL in complex with fluoropyruvate was determined, assisting rationalisation of the stereochemical outcome of C-C bond formation.


Assuntos
Biocatálise , Imino Furanoses/metabolismo , Imino Piranoses/metabolismo , Oxo-Ácido-Liases/metabolismo , Piruvatos/metabolismo , Imino Furanoses/química , Imino Piranoses/química , Conformação Molecular , Piruvatos/química , Estereoisomerismo
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 162-72, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615870

RESUMO

Despite huge advances in the computational techniques available for simulating biomolecules at the quantum-mechanical, atomistic and coarse-grained levels, there is still a widespread perception amongst the experimental community that these calculations are highly specialist and are not generally applicable by researchers outside the theoretical community. In this article, the successes and limitations of biomolecular simulation and the further developments that are likely in the near future are discussed. A brief overview is also provided of the experimental biophysical methods that are commonly used to probe biomolecular structure and dynamics, and the accuracy of the information that can be obtained from each is compared with that from modelling. It is concluded that progress towards an accurate spatial and temporal model of biomacromolecules requires a combination of all of these biophysical techniques, both experimental and computational.


Assuntos
Simulação por Computador , Ácidos Nucleicos/química , Proteínas/química , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Teoria Quântica
14.
Chembiochem ; 16(4): 559-64, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25607656

RESUMO

For some homodimeric copper amine oxidases (CuAO), there is suggestive evidence of differential activity at the two active sites implying potential cooperativity between the two monomers. To examine this phenomenon for the Arthrobacter globiformis CuAO (AGAO), we purified a heterodimeric form of the enzyme for comparison with the homodimer. The heterodimer comprises an active wild-type monomer and an inactive monomer in which an active-site tyrosine is mutated to phenylalanine (Y382F). This mutation prevents the formation of the trihydroxyphenylalanine quinone (TPQ) cofactor. A pETDuet vector and a dual fusion tag strategy was used to purify heterodimers (WT/Y382F) from homodimers. Purity was confirmed by western blot and native PAGE analyses. Spectral and kinetic studies support the view that whether there are one or two functional monomers in the dimer, the properties of each functional monomer are the same, thus indicating no communication between the active sites in this bacterial enzyme.


Assuntos
Amina Oxidase (contendo Cobre)/química , Arthrobacter/enzimologia , Amina Oxidase (contendo Cobre)/metabolismo , Arthrobacter/química , Cinética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
15.
J Virol ; 88(11): 6093-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648455

RESUMO

UNLABELLED: The Picornaviridae family of small, nonenveloped viruses includes major pathogens of humans and animals. They have positive-sense, single-stranded RNA genomes, and the mechanism(s) by which these genomes are introduced into cells to initiate infection remains poorly understood. The structures of presumed uncoating intermediate particles of several picornaviruses show limited expansion and some increased porosity compared to the mature virions. Here, we present the cryo-electron microscopy structure of native equine rhinitis A virus (ERAV), together with the structure of a massively expanded ERAV particle, each at ∼17-Šresolution. The expanded structure has large pores on the particle 3-fold axes and has lost the RNA genome and the capsid protein VP4. The expanded structure thus illustrates both the limits of structural plasticity in such capsids and a plausible route by which genomic RNA might exit. IMPORTANCE: Picornaviruses are important animal and human pathogens that protect their genomic RNAs within a protective protein capsid. Upon infection, this genomic RNA must be able to leave the capsid to initiate a new round of infection. We describe here the structure of a unique, massively expanded state of equine rhinitis A virus that provides insight into how this exit might occur.


Assuntos
Aphthovirus/química , Capsídeo/química , Modelos Moleculares , Conformação Molecular , Picornaviridae/química , Vírion/ultraestrutura , Aphthovirus/ultraestrutura , Microscopia Crioeletrônica , Processamento de Imagem Assistida por Computador
16.
Hepatology ; 59(2): 408-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24022996

RESUMO

UNLABELLED: Current interferon-based therapy for hepatitis C virus (HCV) infection is inadequate, prompting a shift toward combinations of direct-acting antivirals (DAA) with the first protease-targeted drugs licensed in 2012. Many compounds are in the pipeline yet primarily target only three viral proteins, namely, NS3/4A protease, NS5B polymerase, and NS5A. With concerns growing over resistance, broadening the repertoire for DAA targets is a major priority. Here we describe the complete structure of the HCV p7 protein as a monomeric hairpin, solved using a novel combination of chemical shift and nuclear Overhauser effect (NOE)-based methods. This represents atomic resolution information for a full-length virus-coded ion channel, or "viroporin," whose essential functions represent a clinically proven class of antiviral target exploited previously for influenza A virus therapy. Specific drug-protein interactions validate an allosteric site on the channel periphery and its relevance is demonstrated by the selection of novel, structurally diverse inhibitory small molecules with nanomolar potency in culture. Hit compounds represent a 10,000-fold improvement over prototypes, suppress rimantadine resistance polymorphisms at submicromolar concentrations, and show activity against other HCV genotypes. CONCLUSION: This proof-of-principle that structure-guided design can lead to drug-like molecules affirms p7 as a much-needed new target in the burgeoning era of HCV DAA.


Assuntos
Antivirais/farmacologia , Modelos Moleculares , Modelos Estruturais , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Vírion/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Antivirais/uso terapêutico , Genótipo , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas Virais/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1166-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699660

RESUMO

Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of ß-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.


Assuntos
Escherichia coli/enzimologia , Glutamato Descarboxilase/química , Ativação Enzimática , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Treonina/genética , Treonina/metabolismo
18.
J Am Chem Soc ; 136(1): 137-46, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328211

RESUMO

Cellular retinaldehyde-binding protein (CRALBP) chaperones 11-cis-retinal to convert opsin receptor molecules into photosensitive retinoid pigments of the eye. We report a thermal secondary isomerase activity of CRALBP when bound to 9-cis-retinal. UV/vis and (1)H NMR spectroscopy were used to characterize the product as 9,13-dicis-retinal. The X-ray structure of the CRALBP mutant R234W:9-cis-retinal complex at 1.9 Å resolution revealed a niche in the binding pocket for 9-cis-aldehyde different from that reported for 11-cis-retinal. Combined computational, kinetic, and structural data lead us to propose an isomerization mechanism catalyzed by a network of buried waters. Our findings highlight a specific role of water molecules in both CRALBP-assisted specificity toward 9-cis-retinal and its thermal isomerase activity yielding 9,13-dicis-retinal. Kinetic data from two point mutants of CRALBP support an essential role of Glu202 as the initial proton donor in this isomerization reaction.


Assuntos
Proteínas de Transporte/metabolismo , Isomerases/química , Isomerases/metabolismo , Retinaldeído/química , Proteínas de Transporte/química , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Diterpenos , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Teoria Quântica , Especificidade por Substrato
19.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 101-112, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265876

RESUMO

Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Šlonger and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.


Assuntos
Ácido Glutâmico , Peróxido de Hidrogênio , Catalase/química , Peróxido de Hidrogênio/química , Heme/química , Treonina
20.
Commun Chem ; 7(1): 81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600176

RESUMO

Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA