Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Pharmacol Exp Ther ; 384(1): 173-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310034

RESUMO

Acalabrutinib is a covalent Bruton tyrosine kinase (BTK) inhibitor approved for relapsed/refractory mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. A major metabolite of acalabrutinib (M27, ACP-5862) was observed in human plasma circulation. Subsequently, the metabolite was purified from an in vitro biosynthetic reaction and shown by nuclear magnetic resonance spectroscopy to be a pyrrolidine ring-opened ketone/amide. Synthesis confirmed its structure, and covalent inhibition of wild-type BTK was observed in a biochemical kinase assay. A twofold lower potency than acalabrutinib was observed but with similar high kinase selectivity. Like acalabrutinib, ACP-5862 was the most selective toward BTK relative to ibrutinib and zanubrutinib. Because of the potency, ACP-5862 covalent binding properties, and potential contribution to clinical efficacy of acalabrutinib, factors influencing acalabrutinib clearance and ACP-5862 formation and clearance were assessed. rCYP (recombinant cytochrome P450) reaction phenotyping indicated that CYP3A4 was responsible for ACP-5862 formation and metabolism. ACP-5862 formation Km (Michaelis constant) and Vmax were 2.78 µM and 4.13 pmol/pmol CYP3A/min, respectively. ACP-5862 intrinsic clearance was 23.6 µL/min per mg. Acalabrutinib weakly inhibited CYP2C8, CYP2C9, and CYP3A4, and ACP-5862 weakly inhibited CYP2C9 and CYP2C19; other cytochrome P450s, UGTs (uridine 5'-diphospho-glucuronosyltransferases), and aldehyde oxidase were not inhibited. Neither parent nor ACP-5862 strongly induced CYP1A2, CYP2B6, or CYP3A4 mRNA. Acalabrutinib and ACP-5862 were substrates of multidrug resistance protein 1 and breast cancer resistance protein but not OATP1B1 or OATP1B3. Our work indicates that ACP-5862 may contribute to clinical efficacy in acalabrutinib-treated patients and illustrates how proactive metabolite characterization allows timely assessment of drug-drug interactions and potential contributions of metabolites to pharmacological activity. SIGNIFICANCE STATEMENT: This work characterized the major metabolite of acalabrutinib, ACP-5862. Its contribution to the pharmacological activity of acalabrutinib was assessed based on covalent Bruton tyrosine kinase binding kinetics, kinase selectivity, and potency in cellular assays. The metabolic clearance and in vitro drug-drug interaction potential were also evaluated for both acalabrutinib and ACP-5862. The current data suggest that ACP-5862 may contribute to the clinical efficacy observed in acalabrutinib-treated patients and demonstrates the value of proactive metabolite identification and pharmacological characterization.


Assuntos
Citocromo P-450 CYP3A , Humanos , Adulto , Tirosina Quinase da Agamaglobulinemia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Citocromo P-450 CYP2C9 , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/uso terapêutico
2.
J Biol Chem ; 293(29): 11574-11588, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29871924

RESUMO

A primary pathological defect in the heritable eye disorder Stargardt disease is excessive accumulation of cytotoxic lipofuscin bisretinoids in the retina. Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) matches the age-dependent increase in the incidence of the atrophic (dry) form of age-related macular degeneration (AMD) and therefore may be one of several pathogenic factors contributing to AMD progression. Lipofuscin bisretinoid synthesis in the retina depends on the influx of serum retinol from the circulation into the RPE. Formation of the tertiary retinol-binding protein 4 (RBP4)-transthyretin-retinol complex in the serum is required for this influx. Herein, we report the pharmacological effects of the non-retinoid RBP4 antagonist, BPN-14136. BPN-14136 dosing in the Abca4-/- mouse model of increased lipofuscinogenesis significantly reduced serum RBP4 levels and inhibited bisretinoid synthesis, and this inhibition correlated with a partial reduction in visual cycle retinoids such as retinaldehydes serving as bisretinoid precursors. BPN-14136 administration at doses inducing maximal serum RBP4 reduction did not produce changes in the rate of the visual cycle, consistent with minimal changes in dark adaptation. Abca4-/- mice exhibited dysregulation of the complement system in the retina, and BPN-14136 administration normalized the retinal levels of proinflammatory complement cascade components such as complement factors D and H, C-reactive protein, and C3. We conclude that BPN-14136 has several beneficial characteristics, combining inhibition of bisretinoid synthesis and reduction in retinaldehydes with normalization of the retinal complement system. BPN-14136, or a similar compound, may be a promising drug candidate to manage Stargardt disease and dry AMD.


Assuntos
Ácidos Carboxílicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Retina/efeitos dos fármacos , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Doença de Stargardt/tratamento farmacológico , Animais , Ácidos Carboxílicos/uso terapêutico , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Lipofuscina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Retina/metabolismo , Retina/patologia , Retinoides/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Rodopsina/metabolismo , Doença de Stargardt/patologia
3.
Drug Metab Dispos ; 47(2): 145-154, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30442651

RESUMO

Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a ß-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Administração Oral , Adulto , Animais , Antineoplásicos/análise , Antineoplásicos/metabolismo , Benzamidas/análise , Benzamidas/metabolismo , Disponibilidade Biológica , Cães , Fezes/química , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Hidrólise , Absorção Intestinal , Linfoma de Célula do Manto/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Oxirredução , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/metabolismo , Pirazinas/análise , Pirazinas/metabolismo , Ratos , Ratos Sprague-Dawley , Urina/química , Adulto Jovem
4.
BMC Endocr Disord ; 18(1): 24, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720169

RESUMO

BACKGROUND: Cushing's syndrome in humans shares many similarities with its counterpart in dogs in terms of etiology (pituitary versus adrenal causes), clinical signs, and pathophysiologic sequelae. In both species, treatment of pituitary- and adrenal-dependent disease is met with limitations. ATR-101, a selective inhibitor of ACAT1 (acyl coenzyme A:cholesterol acyltransferase 1), is a novel small molecule therapeutic currently in clinical development for the treatment of adrenocortical carcinoma, congenital adrenal hyperplasia, and Cushing's syndrome in humans. Previous studies in healthy dogs have shown that ATR-101 treatment led to rapid, dose-dependent decreases in adrenocorticotropic hormone (ACTH) stimulated cortisol levels. The purpose of this clinical study was to investigate the effects of ATR-101 in dogs with Cushing's syndrome. METHODS: ATR-101 pharmacokinetics and activity were assessed in 10 dogs with naturally-occurring Cushing's syndrome, including 7 dogs with pituitary-dependent disease and 3 dogs with adrenal-dependent disease. ATR-101 was administered at 3 mg/kg PO once daily for one week, followed by 30 mg/kg PO once daily for one (n = 4) or three (n = 6) weeks. Clinical, biochemical, adrenal hormonal, and pharmacokinetic data were obtained weekly for study duration. RESULTS: ATR-101 exposure increased with increasing dose. ACTH-stimulated cortisol concentrations, the primary endpoint for the study, were significantly decreased with responders (9 of 10 dogs) experiencing a mean ± standard deviation reduction in cortisol levels of 50 ± 17% at study completion. Decreases in pre-ACTH-stimulated cortisol concentrations were observed in some dogs although overall changes in pre-ACTH cortisol concentrations were not significant. The compound was well-tolerated and no serious drug-related adverse effects were reported. CONCLUSIONS: This study highlights the potential utility of naturally occurring canine Cushing's syndrome as a model for human disease and provides proof of concept for ATR-101 as a novel agent for the treatment of endocrine disorders like Cushing's syndrome in humans.


Assuntos
Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Hormônio Adrenocorticotrópico/metabolismo , Síndrome de Cushing/veterinária , Doenças do Cão/metabolismo , Hidrocortisona/metabolismo , Compostos de Fenilureia/farmacologia , Animais , Síndrome de Cushing/tratamento farmacológico , Síndrome de Cushing/metabolismo , Síndrome de Cushing/patologia , Cães , Feminino , Masculino , Compostos de Fenilureia/farmacocinética , Distribuição Tecidual
5.
J Pharmacol Exp Ther ; 363(2): 240-252, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882879

RESUMO

Several small-molecule Bruton tyrosine kinase (BTK) inhibitors are in development for B cell malignancies and autoimmune disorders, each characterized by distinct potency and selectivity patterns. Herein we describe the pharmacologic characterization of BTK inhibitor acalabrutinib [compound 1, ACP-196 (4-[8-amino-3-[(2S)-1-but-2-ynoylpyrrolidin-2-yl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide)]. Acalabrutinib possesses a reactive butynamide group that binds covalently to Cys481 in BTK. Relative to the other BTK inhibitors described here, the reduced intrinsic reactivity of acalabrutinib helps to limit inhibition of off-target kinases having cysteine-mediated covalent binding potential. Acalabrutinib demonstrated higher biochemical and cellular selectivity than ibrutinib and spebrutinib (compounds 2 and 3, respectively). Importantly, off-target kinases, such as epidermal growth factor receptor (EGFR) and interleukin 2-inducible T cell kinase (ITK), were not inhibited. Determination of the inhibitory potential of anti-immunoglobulin M-induced CD69 expression in human peripheral blood mononuclear cells and whole blood demonstrated that acalabrutinib is a potent functional BTK inhibitor. In vivo evaluation in mice revealed that acalabrutinib is more potent than ibrutinib and spebrutinib. Preclinical and clinical studies showed that the level and duration of BTK occupancy correlates with in vivo efficacy. Evaluation of the pharmacokinetic properties of acalabrutinib in healthy adult volunteers demonstrated rapid absorption and fast elimination. In these healthy individuals, a single oral dose of 100 mg showed approximately 99% median target coverage at 3 and 12 hours and around 90% at 24 hours in peripheral B cells. In conclusion, acalabrutinib is a BTK inhibitor with key pharmacologic differentiators versus ibrutinib and spebrutinib and is currently being evaluated in clinical trials.


Assuntos
Benzamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/farmacologia , Tirosina Quinase da Agamaglobulinemia , Animais , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Células Jurkat , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/sangue , Proteínas Tirosina Quinases/metabolismo , Pirazinas/química
6.
Biopharm Drug Dispos ; 35(4): 237-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24415392

RESUMO

(2R,3R,4S,5R)-2-(6-Amino-9H-purin-9-yl)-5-((((1r,3S)-3-(2-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)ethyl)cyclobutyl)(isopropyl)amino)methyl)tetrahydrofuran-3,4-diol (EPZ-5676) is a novel DOT1L histone methyltransferase inhibitor currently in clinical development for the treatment of MLL-rearranged leukemias. This report describes the preclinical pharmacokinetics and metabolism of EPZ-5676, an aminonucleoside analog with exquisite target potency and selectivity that has shown robust and durable tumor growth inhibition in preclinical models. The in vivo pharmacokinetics in mouse, rat and dog were characterized following i.v. and p.o. administration; EPZ-5676 had moderate to high clearance, low oral bioavailability with a steady-state volume of distribution 2-3 fold higher than total body water. EPZ-5676 showed biexponential kinetics following i.v. administration, giving rise to a terminal elimination half-life (t1/2 ) of 1.1, 3.7 and 13.6 h in mouse, rat and dog, respectively. The corresponding in vitro ADME parameters were also studied and utilized for in vitro-in vivo extrapolation purposes. There was good agreement between the microsomal clearance and the in vivo clearance implicating hepatic oxidative metabolism as the predominant elimination route in preclinical species. Furthermore, low renal clearance was observed in mouse, approximating to fu -corrected glomerular filtration rate (GFR) and thus passive glomerular filtration. The metabolic pathways across species were studied in liver microsomes in which EPZ-5676 was metabolized to three monohydroxylated metabolites (M1, M3 and M5), one N-dealkylated product (M4) as well as an N-oxide (M6).


Assuntos
Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Metiltransferases/antagonistas & inibidores , Animais , Antineoplásicos/sangue , Benzimidazóis/sangue , Proteínas Sanguíneas/metabolismo , Cães , Hepatócitos/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Permeabilidade , Ratos Sprague-Dawley
7.
PLoS One ; 15(1): e0228291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978148

RESUMO

Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined following oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus monkeys. Dynamics of plasma RBP4 reduction in response to compound administration was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-normalized exposure was significantly higher in NHP than in dog. Baseline concentrations of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136 to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both species correlated with compound exposure. Despite adequate PK and PD characteristics of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support the choice of NHP as a non-rodent safety species.


Assuntos
Proteínas Plasmáticas de Ligação ao Retinol/análise , Bibliotecas de Moléculas Pequenas/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Cães , Macaca fascicularis , Masculino , Modelos Animais , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/administração & dosagem
8.
Drug Metab Dispos ; 37(3): 502-13, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19088267

RESUMO

(R)-N-{1-[3-(4-Ethoxy-phenyl)-4-oxo-3,4-dihydro-pyrido[2,3-d]-pyrimidin-2-yl]-ethyl}-N-pyridin-3-yl-methyl-2-(4-trifluoromethoxyphenyl)-acetamide (AMG 487) is a potent and selective orally bioavailable chemokine (C-X-C motif) receptor 3 (CXCR3) antagonist that displays dose- and time-dependent pharmacokinetics in human subjects after multiple oral dosing. Although AMG 487 exhibited linear pharmacokinetics on both days 1 and 7 at the 25-mg dose, dose- and time-dependent kinetics were evident at the two higher doses. Nonlinear kinetics were more pronounced after multiple dosing. Area under the plasma concentration-time curve from 0 to 24 h [AUC((0-24 h))] increased 96-fold with a 10-fold increase in dose on day 7 compared with a 28-fold increase in AUC((0-24 h)) on day 1. These changes were correlated with time- and dose-dependent decreases in the metabolite to parent plasma concentrations, suggesting that these changes result from a decrease in the oral clearance (CL) of AMG 487 (e.g., intestinal/hepatic first-pass metabolism and systemic CL). The biotransformation of AMG 487 is dependent on CYP3A and results in the formation of two primary metabolites, a pyridyl N-oxide AMG 487 (M1) and an O-deethylated AMG 487 (M2). One of these metabolites, M2, undergoes further metabolism by CYP3A. M2 has also been demonstrated to inhibit CYP3A in a competitive (K(i)=0.75 microM) manner as well as via mechanism-based inhibition (unbound K(I)=1.4 microM, k(inact)=0.041 min(-1)). Data from this study implicate M2-mediated CYP3A mechanism-based inhibition as the proximal cause for the time-dependent pharmacokinetics of AMG 487. However, the sequential metabolism of M2, nonlinear AMG 487 pharmacokinetics, and the inability to accurately determine the role of intestinal AMG 487 metabolism complicates the correlation between M2 plasma concentrations and the time-dependent AMG 487 pharmacokinetic changes.


Assuntos
Acetamidas/farmacocinética , Pirimidinonas/farmacocinética , Receptores CXCR3/antagonistas & inibidores , Acetamidas/administração & dosagem , Adulto , Área Sob a Curva , Cromatografia Líquida , Estudos de Coortes , Inibidores das Enzimas do Citocromo P-450 , Esquema de Medicação , Humanos , Masculino , Pirimidinonas/administração & dosagem , Espectrometria de Massas em Tandem
9.
J Med Chem ; 62(11): 5470-5500, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31079449

RESUMO

Retinol-binding protein 4 (RBP4) serves as a transporter for all- trans-retinol (1) in the blood, and it has been proposed to act as an adipokine. Elevated plasma levels of the protein have been linked to diabetes, obesity, cardiovascular diseases, and nonalcoholic fatty liver disease (NAFLD). Recently, adipocyte-specific overexpression of RBP4 was reported to cause hepatic steatosis in mice. We previously identified an orally bioavailable RBP4 antagonist that significantly lowered RBP4 serum levels in Abca4-/- knockout mice with concomitant normalization of complement system protein expression and reduction of bisretinoid formation within the retinal pigment epithelium. We describe herein the discovery of novel RBP4 antagonists 48 and 59, which reduce serum RBP4 levels by >80% in mice upon acute oral dosing. Furthermore, 59 demonstrated efficacy in the transgenic adi-hRBP4 murine model of hepatic steatosis, suggesting that RBP4 antagonists may also have therapeutic utility for the treatment of NAFLD.


Assuntos
Desenho de Fármacos , Fígado Gorduroso/tratamento farmacológico , Piperidinas/síntese química , Piperidinas/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Animais , Técnicas de Química Sintética , Modelos Animais de Doenças , Masculino , Camundongos , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Ratos , Distribuição Tecidual
10.
J Med Chem ; 58(15): 5863-88, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26181715

RESUMO

Antagonists of retinol-binding protein 4 (RBP4) impede ocular uptake of serum all-trans retinol (1) and have been shown to reduce cytotoxic bisretinoid formation in the retinal pigment epithelium (RPE), which is associated with the pathogenesis of both dry age-related macular degeneration (AMD) and Stargardt disease. Thus, these agents show promise as a potential pharmacotherapy by which to stem further neurodegeneration and concomitant vision loss associated with geographic atrophy of the macula. We previously disclosed the discovery of a novel series of nonretinoid RBP4 antagonists, represented by bicyclic [3.3.0]-octahydrocyclopenta[c]pyrrolo analogue 4. We describe herein the utilization of a pyrimidine-4-carboxylic acid fragment as a suitable isostere for the anthranilic acid appendage of 4, which led to the discovery of standout antagonist 33. Analogue 33 possesses exquisite in vitro RBP4 binding affinity and favorable drug-like characteristics and was found to reduce circulating plasma RBP4 levels in vivo in a robust manner (>90%).


Assuntos
Compostos Bicíclicos com Pontes/uso terapêutico , Atrofia Geográfica/tratamento farmacológico , Degeneração Macular/congênito , Pirróis/uso terapêutico , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Animais , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacocinética , Cães , Humanos , Degeneração Macular/tratamento farmacológico , Células Madin Darby de Rim Canino , Pirróis/química , Pirróis/farmacocinética , Ratos , Ratos Sprague-Dawley , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Doença de Stargardt , Relação Estrutura-Atividade
11.
J Med Chem ; 57(18): 7731-57, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25210858

RESUMO

Accumulation of lipofuscin in the retina is associated with pathogenesis of atrophic age-related macular degeneration and Stargardt disease. Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity. Synthesis of lipofuscin bisretinoids depends on the influx of retinol from serum to the retina. Compounds antagonizing the retinol-dependent interaction of retinol-binding protein 4 (RBP4) with transthyretin in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid formation. We recently showed that A1120 (3), a potent carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin bisretinoid formation in the retinas of Abca4(-/-) mice. As part of the NIH Blueprint Neurotherapeutics Network project we undertook the in vitro exploration to identify novel conformationally flexible and constrained RBP4 antagonists with improved potency and metabolic stability. We also demonstrate that upon acute and chronic dosing in rats, 43, a potent cyclopentyl fused pyrrolidine antagonist, reduced circulating plasma RBP4 protein levels by approximately 60%.


Assuntos
Desenho de Fármacos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Piperidinas/síntese química , Piperidinas/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Animais , Atrofia , Técnicas de Química Sintética , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Piperidinas/química , Piperidinas/metabolismo , Pré-Albumina/antagonistas & inibidores , Conformação Proteica , Ratos , Proteínas Plasmáticas de Ligação ao Retinol/química , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Doença de Stargardt , Relação Estrutura-Atividade
12.
Drug Metab Dispos ; 33(5): 676-82, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15716364

RESUMO

Caspofungin (CANCIDAS, a registered trademark of Merck & Co., Inc.) is a novel echinocandin antifungal agent used in the treatment of esophageal and invasive candidiases, invasive aspergillosis, and neutropenia. Available data suggest that the liver is a key organ responsible for caspofungin elimination in rodents and humans. Caspofungin is primarily eliminated by metabolic transformation; however, the rate of metabolism is slow. Accordingly, it was hypothesized that drug uptake transporters expressed on the basolateral domain of hepatocytes could significantly influence the extent of caspofungin uptake and subsequent elimination. In this study, experiments ranging from perfused rat livers to heterologous expression of individual hepatic uptake transporters were utilized to identify the transporter(s) responsible for the observed liver-specific uptake of this compound. Data from perfused rat liver studies were consistent with the presence of carrier-mediated caspofungin hepatic uptake, although this process appeared to be slow. To identify a relevant hepatic uptake transporter, we developed novel Tet-on HeLa cells expressing OATP1B1 (OATP-C, SLC21A6) and OATP1B3 (OATP8, SLC21A8), whose target gene can be overexpressed by the addition of doxycycline. A modest but statistically significant uptake of caspofungin was observed in cells overexpressing OATP1B1, but not OATP1B3. Taken together, these findings suggest that OATP1B1-mediated hepatic uptake may contribute to the overall elimination of this drug from the body.


Assuntos
Antifúngicos/farmacocinética , Fígado/metabolismo , Peptídeos Cíclicos/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adsorção , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Caspofungina , Equinocandinas , Células HeLa , Humanos , Técnicas In Vitro , Células KB , Cinética , Lipopeptídeos , Fígado/citologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Perfusão , Plasmídeos/genética , Ligação Proteica , Ratos , Receptores de Superfície Celular/metabolismo , Distribuição Tecidual , Transfecção
13.
Anal Chem ; 75(3): 469-78, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12585472

RESUMO

The application of liquid chromatography tandem mass spectrometry for simultaneous analysis of major human cytochrome P450 activities via a single atmospheric pressure ionization (API) LC/MS/MS method has been hampered by the preferred detection of 6-hydroxychlorzoxazone (HCZ), the metabolite of the CYP2E1 probe, chlorzoxazone, under negative API. An initial simulation of the dissociation constants suggested the potential ionization of the enol form of HCZ at low pH, and the accurate mass measurements confirmed the presence of the protonated HCZ signal under (+) ESI at pH 3. However, the CID spectrum of the protonated HCZ resulted in a few intense, but uncommon, fragment ions that could be utilized for specific selected reaction monitoring (SRM) transitions. The deduced elemental compositions of these fragment ions indicated possible aromatic ring opening for the first two intense product ions at m/z 130 and 115, as well as chlorine radical loss for the third ion at m/z 151. Further precursor and product ion scan studies, along with the deuterium ion exchange in solution, revealed the involvement of three distinct pathways of fragmentation. The m/z 186-->130 transition, which was shown to be specific in human plasma and rat hepatic microsomes, was further combined with the SRM transition of reserpine (internal standard) and eight probe substrates for human cytochrome P450 isoforms. This led to the development of a full LC/MS/MS method capable of analyzing a total of nine human P450 activities within 3 min, including CYP2E1, using a single assay in the (+) ESI mode. The HCZ assay showed excellent linearity with a coefficient of determination (R2) greater than 0.98 at dynamic range of 0.05 (LOQ) to 40 microM. Preliminary data from the three-day validation of the HCZ assay indicated that the accuracy and precision for quality control samples was within +/- 15% of the spiked concentration at all levels.


Assuntos
Clorzoxazona/análogos & derivados , Clorzoxazona/química , Citocromo P-450 CYP2E1/análise , Sistema Enzimático do Citocromo P-450/análise , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Humanos , Fragmentos de Peptídeos , Reprodutibilidade dos Testes
14.
J Pharmacol Exp Ther ; 301(3): 1042-51, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12023536

RESUMO

A series of studies were conducted to explore the mechanism of the pharmacokinetic interaction between simvastatin (SV) and gemfibrozil (GFZ) reported recently in human subjects. After administration of a single dose of SV (4 mg/kg p.o.) to dogs pretreated with GFZ (75 mg/kg p.o., twice daily for 5 days), there was an increase (approximately 4-fold) in systemic exposure to simvastatin hydroxy acid (SVA), but not to SV, similar to the observation in humans. GFZ pretreatment did not increase the ex vivo hydrolysis of SV to SVA in dog plasma. In dog and human liver microsomes, GFZ exerted a minimal inhibitory effect on CYP3A-mediated SVA oxidation, but did inhibit SVA glucuronidation. After i.v. administration of [(14)C]SVA to dogs, GFZ treatment significantly reduced (2-3-fold) the plasma clearance of SVA and the biliary excretion of SVA glucuronide (together with its cyclization product SV), but not the excretion of a major oxidative metabolite of SVA, consistent with the in vitro findings in dogs. Among six human UGT isozymes tested, UGT1A1 and 1A3 were capable of catalyzing the glucuronidation of both GFZ and SVA. Further studies conducted in human liver microsomes with atorvastatin (AVA) showed that, as with SVA, GFZ was a less potent inhibitor of the CYP3A4-mediated oxidation of this drug than its glucuronidation. However, with cerivastatin (CVA), the glucuronidation as well as the CYP2C8- and CYP3A4-mediated oxidation pathways were much more susceptible to inhibition by GFZ than was observed with SVA or AVA. Collectively, the results of these studies provide metabolic insight into the nature of drug-drug interaction between GFZ and statins, and a possible explanation for the enhanced susceptibility of CVA to interactions with GFZ.


Assuntos
Genfibrozila/metabolismo , Hipolipemiantes/metabolismo , Sinvastatina/análogos & derivados , Sinvastatina/metabolismo , Administração Oral , Animais , Área Sob a Curva , Catálise , Cães , Interações Medicamentosas/fisiologia , Genfibrozila/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Hidrólise , Hipolipemiantes/sangue , Hipolipemiantes/química , Hipolipemiantes/farmacocinética , Isoenzimas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxirredução/efeitos dos fármacos , Sinvastatina/sangue , Sinvastatina/química , Sinvastatina/farmacocinética
15.
Antimicrob Agents Chemother ; 48(4): 1272-80, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047529

RESUMO

The metabolism, excretion, and pharmacokinetics of caspofungin (Cancidas; Merck & Co., Inc.) were investigated after administration of a single intravenous dose to mice, rats, rabbits, and monkeys. Caspofungin had a low plasma clearance (0.29 to 1.05 ml/min/kg) and a long terminal elimination half-life (11.7 h to 59.7 h) in all preclinical species. The elimination kinetics of caspofungin were multiphasic and displayed an initial distribution phase followed by a dominant beta-elimination phase. The presence of low levels of prolonged radioactivity in plasma was observed and was partially attributable to the chemical degradation product M0. Excretion studies with [(3)H]caspofungin indicated that the hepatic and renal routes play an important role in the elimination of caspofungin, as a large percentage of the radiolabeled dose was recovered in urine and feces. Excretion of radioactivity in all species studied was slow, and low levels of radioactivity were detected in daily urine and fecal samples throughout a prolonged collection period. Although urinary profiles indicated the presence of several metabolites (M0, M1, M2, M3, M4, M5, and M6), the majority of the total radioactivity was associated with the polar metabolites M1 [4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine] and M2 [N-acetyl-4(S)-hydroxy-4-(4-hydroxyphenyl)-L-threonine]. Caspofungin was thus primarily eliminated by metabolic transformation; however, the rate of metabolism was slow. These results suggest that distribution plays a prominent role in determining the plasma pharmacokinetics and disposition of caspofungin, as very little excretion or biotransformation occurred during the early days after dose administration, a period during which concentrations in plasma fell substantially. The disposition of caspofungin in preclinical species was similar to that reported previously in humans.


Assuntos
Antifúngicos/farmacocinética , Peptídeos Cíclicos , Peptídeos/farmacocinética , Animais , Área Sob a Curva , Bile/metabolismo , Caspofungina , Cromatografia Líquida de Alta Pressão , Equinocandinas , Feminino , Meia-Vida , Lipopeptídeos , Macaca mulatta , Masculino , Camundongos , Coelhos , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
16.
Drug Metab Dispos ; 30(5): 505-12, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11950779

RESUMO

The active forms of all marketed hydroxymethylglutaryl (HMG)-CoA reductase inhibitors share a common dihydroxy heptanoic or heptenoic acid side chain. In this study, we present evidence for the formation of acyl glucuronide conjugates of the hydroxy acid forms of simvastatin (SVA), atorvastatin (AVA), and cerivastatin (CVA) in rat, dog, and human liver preparations in vitro and for the excretion of the acyl glucuronide of SVA in dog bile and urine. Upon incubation of each statin (SVA, CVA or AVA) with liver microsomal preparations supplemented with UDP-glucuronic acid, two major products were detected. Based on analysis by high-pressure liquid chromatography, UV spectroscopy, and/or liquid chromatography (LC)-mass spectrometry analysis, these metabolites were identified as a glucuronide conjugate of the hydroxy acid form of the statin and the corresponding delta-lactone. By means of an LC-NMR technique, the glucuronide structure was established to be a 1-O-acyl-beta-D-glucuronide conjugate of the statin acid. The formation of statin glucuronide and statin lactone in human liver microsomes exhibited modest intersubject variability (3- to 6-fold; n = 10). Studies with expressed UDP glucuronosyltransferases (UGTs) revealed that both UGT1A1 and UGT1A3 were capable of forming the glucuronide conjugates and the corresponding lactones for all three statins. Kinetic studies of statin glucuronidation and lactonization in liver microsomes revealed marked species differences in intrinsic clearance (CL(int)) values for SVA (but not for AVA or CVA), with the highest CL(int) observed in dogs, followed by rats and humans. Of the statins studied, SVA underwent glucuronidation and lactonization in human liver microsomes, with the lowest CL(int) (0.4 microl/min/mg of protein for SVA versus approximately 3 microl/min/mg of protein for AVA and CVA). Consistent with the present in vitro findings, substantial levels of the glucuronide conjugate (approximately 20% of dose) and the lactone form of SVA [simvastatin (SV); approximately 10% of dose] were detected in bile following i.v. administration of [(14)C]SVA to dogs. The acyl glucuronide conjugate of SVA, upon isolation from an in vitro incubation, underwent spontaneous cyclization to SV. Since the rate of this lactonization was high under conditions of physiological pH, the present results suggest that the statin lactones detected previously in bile and/or plasma following administration of SVA to animals or of AVA or CVA to animals and humans, might originate, at least in part, from the corresponding acyl glucuronide conjugates. Thus, acyl glucuronide formation, which seems to be a common metabolic pathway for the hydroxy acid forms of statins, may play an important, albeit previously unrecognized, role in the conversion of active HMG-CoA reductase inhibitors to their latent delta-lactone forms.


Assuntos
Glucuronídeos/metabolismo , Ácidos Heptanoicos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Lactonas/metabolismo , Piridinas/metabolismo , Pirróis/metabolismo , Sinvastatina/metabolismo , Animais , Atorvastatina , Bile/química , Cães , Glucuronídeos/urina , Glucuronosiltransferase/metabolismo , Ácidos Heptanoicos/farmacocinética , Ácidos Heptanoicos/urina , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/urina , Lactonas/farmacocinética , Lactonas/urina , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas , Piridinas/farmacocinética , Piridinas/urina , Pirróis/farmacocinética , Pirróis/urina , Ratos , Proteínas Recombinantes/metabolismo , Sinvastatina/farmacocinética , Sinvastatina/urina , Uridina Difosfato Ácido Glucurônico/metabolismo
17.
Drug Metab Dispos ; 32(11): 1254-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15286054

RESUMO

The technique of accelerator mass spectrometry (AMS) was validated successfully and used to study the pharmacokinetics and disposition in dogs of a preclinical drug candidate (7-deaza-2'-C-methyl-adenosine; Compound A), after oral and intravenous administration. The primary objective of this study was to examine whether Compound A displayed linear kinetics across subpharmacological (microdose) and pharmacological dose ranges in an animal model, before initiation of a human microdose study. The AMS-derived disposition properties of Compound A were comparable to data obtained via conventional techniques such as liquid chromatography-tandem mass spectrometry and liquid scintillation counting analyses. Compound A displayed multiphasic kinetics and exhibited low plasma clearance (5.8 ml/min/kg), a long terminal elimination half-life (17.5 h), and high oral bioavailability (103%). Currently, there are no published comparisons of the kinetics of a pharmaceutical compound at pharmacological versus subpharmacological doses using microdosing strategies. The present study thus provides the first description of the full pharmacokinetic profile of a drug candidate assessed under these two dosing regimens. The data demonstrated that the pharmacokinetic properties of Compound A following dosing at 0.02 mg/kg were similar to those at 1 mg/kg, indicating that in the case of Compound A, the pharmacokinetics in the dog appear to be linear across this 50-fold dose range. Moreover, the exceptional sensitivity of AMS provided a pharmacokinetic profile of Compound A, even after a microdose, which revealed aspects of the disposition of this agent that were inaccessible by conventional techniques.


Assuntos
Nucleosídeos/administração & dosagem , Nucleosídeos/farmacocinética , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Animais , Cromatografia Líquida/métodos , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Espectrometria de Massas/métodos , Nucleosídeos/análise , Preparações Farmacêuticas/análise
18.
Antimicrob Agents Chemother ; 48(3): 815-23, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14982770

RESUMO

The disposition of caspofungin, a parenteral antifungal drug, was investigated. Following a single, 1-h, intravenous infusion of 70 mg (200 microCi) of [(3)H]caspofungin to healthy men, plasma, urine, and feces were collected over 27 days in study A (n = 6) and plasma was collected over 26 weeks in study B (n = 7). Supportive data were obtained from a single-dose [(3)H]caspofungin tissue distribution study in rats (n = 3 animals/time point). Over 27 days in humans, 75.4% of radioactivity was recovered in urine (40.7%) and feces (34.4%). A long terminal phase (t(1/2) = 14.6 days) characterized much of the plasma drug profile of radioactivity, which remained quantifiable to 22.3 weeks. Mass balance calculations indicated that radioactivity in tissues peaked at 1.5 to 2 days at approximately 92% of the dose, and the rate of radioactivity excretion peaked at 6 to 7 days. Metabolism and excretion of caspofungin were very slow processes, and very little excretion or biotransformation occurred in the first 24 to 30 h postdose. Most of the area under the concentration-time curve of caspofungin was accounted for during this period, consistent with distribution-controlled clearance. The apparent distribution volume during this period indicated that this distribution process is uptake into tissue cells. Radioactivity was widely distributed in rats, with the highest concentrations in liver, kidney, lung, and spleen. Liver exhibited an extended uptake phase, peaking at 24 h with 35% of total dose in liver. The plasma profile of caspofungin is determined primarily by the rate of distribution of caspofungin from plasma into tissues.


Assuntos
Antifúngicos/farmacocinética , Peptídeos Cíclicos , Peptídeos/farmacocinética , Adulto , Algoritmos , Animais , Antifúngicos/sangue , Antifúngicos/urina , Área Sob a Curva , Biotransformação , Proteínas Sanguíneas/metabolismo , Caspofungina , Equinocandinas , Eritrócitos/metabolismo , Fezes/química , Meia-Vida , Humanos , Lipopeptídeos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Peptídeos/sangue , Peptídeos/urina , Ligação Proteica , Ratos
19.
Chem Res Toxicol ; 16(2): 198-207, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12588191

RESUMO

Compound I, (2-[3-[(2,2-difluoro-2(2-pyridyl)ethyl)amino]-6-methyl-2-oxohydropyrazinyl]-N-[(3-fluoro(2-pyridyl))methyl]acetamide, is a potent competitive inhibitor of thrombin that reacts stoichiometrically with the protease. Compounds of this class possess therapeutic potential as anticoagulation agents. During the metabolic characterization of compound I, evidence was obtained for extensive metabolic activation of the pyrazinone ring system. Following administration of (14)C-labeled I to rats, significant levels of irreversibly bound radioactivity to proteins were detected in rat plasma and liver. LC/MS/MS analysis of metabolites formed in rat and human liver microsomes fortified with glutathione (GSH) revealed the presence of two structurally distinct GSH adducts. It is proposed that the first of these GSH conjugates derives from a two electron oxidation of the 6-methyl-2-oxo-3-aminopyrazinone moiety to afford an electrophilic imine-methide intermediate, while the second is formed by addition of GSH to an epoxide formed by P-450-mediated oxidation of the double bond at the 5-6 position of the pyrazinone ring. The addition of GSH to the proposed epoxide facilitates opening of the pyrazinone ring and a rearrangement to afford a stable, rearranged imidazole-containing metabolite. Elucidation of the metabolic activation pathways of I provides structural guidance for the design of thrombin inhibitors with decreased potential for the generation of chemically reactive intermediates.


Assuntos
Inibidores de Proteases/farmacocinética , Pirazinas/farmacocinética , Trombina/antagonistas & inibidores , Administração Oral , Animais , Ligação Competitiva , Biotransformação , Radioisótopos de Carbono , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Glutationa/química , Glutationa/metabolismo , Humanos , Iminas/química , Iminas/metabolismo , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Pirazinas/química , Pirazinas/farmacologia , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
J Pharmacol Exp Ther ; 304(3): 1161-71, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12604693

RESUMO

The mechanisms of pharmacokinetic interactions of a novel anti-human immunodeficiency virus (anti-HIV-1) antagonist of chemokine receptor 5 (CCR5) [2-(R)-[N-methyl-N-(1-(R)-3-(S)-((4-(3-benzyl-1-ethyl-(1H)-pyrazol-5-yl)piperidin-1-yl)methyl)-4-(S)-(3-fluorophenyl)cyclopent-1-yl)amino]-3-methylbutanoic acid (MRK-1)] with ritonavir were evaluated in rats and monkeys. MRK-1 was a good substrate for the human (MDR1) and mouse (Mdr1a) multidrug resistance protein transporters and was metabolized by CYP3A isozymes in rat, monkey, and human liver microsomes. Both the in vitro MDR1-mediated transport and oxidative metabolism of MRK-1 were inhibited by ritonavir. Although the systemic pharmacokinetics of MRK-1 in rats and monkeys were linear, the oral bioavailability increased with an increase in dose from 2 to 10 mg/kg. The area under the plasma concentration-time curve (AUC) of MRK-1 was increased 4- to 6-fold when a 2 or 10 mg/kg dose was orally coadministered with 10 mg/kg ritonavir. Further pharmacokinetic studies in rats indicated that P-glycoprotein (P-gp) inhibition by ritonavir increased the intestinal absorption of 2 mg/kg MRK-1 maximally by approximately 30 to 40%, and a major component of the interaction likely resulted from its reduced systemic clearance via the inhibition of CYP3A isozymes. Oral coadministration of quinidine (10 and 30 mg/kg) increased both the extent and the first-order rate of absorption of MRK-1 (2 mg/kg) by approximately 40 to 50% and approximately 100 to 300%, respectively, in rats, thus further substantiating the role of P-gp in modulating the intestinal absorption of MRK-1 in this species. At the 10 mg/kg MRK-1 dose, however, the entire increase in its AUC upon coadministration with ritonavir or quinidine could be attributed to a reduced systemic clearance, and no effects on intestinal absorption were apparent. In contrast to rats, the effects of P-gp in determining the intestinal absorption of MRK-1 appeared less significant in rhesus monkeys at either dose.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Hidrocarboneto de Aril Hidroxilases/fisiologia , Antagonistas dos Receptores CCR5 , Oxirredutases N-Desmetilantes/fisiologia , Pirazóis/metabolismo , Ritonavir/farmacologia , Valina/metabolismo , Administração Oral , Animais , Citocromo P-450 CYP3A , Interações Medicamentosas , Inibidores da Protease de HIV/farmacologia , Haplorrinos , Absorção Intestinal/efeitos dos fármacos , Masculino , Oxirredução , Ligação Proteica , Pirazóis/farmacocinética , Quinidina/farmacologia , Ratos , Ratos Sprague-Dawley , Valina/análogos & derivados , Valina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA