Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(46): 14785-97, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26575890

RESUMO

Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-ß (Aß) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer's disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aß forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aß with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Linhagem Celular , Humanos , Técnicas In Vitro , Simulação de Dinâmica Molecular , Oxirredução
2.
J Am Chem Soc ; 136(45): 16009-22, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25322331

RESUMO

Nickel-containing superoxide dismutase (NiSOD) is a mononuclear cysteinate-ligated nickel metalloenzyme that catalyzes the disproportionation of superoxide into dioxygen and hydrogen peroxide by cycling between Ni(II) and Ni(III) oxidation states. All of the ligating residues to nickel are found within the first six residues from the N-terminus, which has prompted several research groups to generate NiSOD metallopeptide-based mimics derived from the first several residues of the NiSOD sequence. To assess the viability of using these metallopeptide-based mimics (NiSOD maquettes) to probe the mechanism of SOD catalysis facilitated by NiSOD, we computationally explored the initial step of the O2(-) reduction mechanism catalyzed by the NiSOD maquette {Ni(II)(SOD(m1))} (SOD(m1) = HCDLP CGVYD PA). Herein we use spectroscopic (S K-edge X-ray absorption spectroscopy, electronic absorption spectroscopy, and circular dichroism spectroscopy) and computational techniques to derive the detailed active-site structure of {Ni(II)(SOD(m1))}. These studies suggest that the {Ni(II)(SOD(m1))} active-site possesses a Ni(II)-S(H(+))-Cys(6) moiety and at least one associated water molecule contained in a hydrogen-bonding interaction to the coordinated Cys(2) and Cys(6) sulfur atoms. A computationally derived mechanism for O2(-) reduction using the formulated active-site structure of {Ni(II)(SOD(m1))} suggests that O2(-) reduction takes place through an apparent initial outersphere hydrogen atom transfer (HAT) from the Ni(II)-S(H(+))-Cys(6) moiety to the O2(-) molecule. It is proposed that the water molecule aids in driving the reaction forward by lowering the Ni(II)-S(H(+))-Cys(6) pK(a). Such a mechanism is not possible in NiSOD itself for structural reasons. These results therefore strongly suggest that maquettes derived from the primary sequence of NiSOD are mechanistically distinct from NiSOD itself despite the similarities in the structure and physical properties of the metalloenzyme vs the NiSOD metallopeptide-based models.


Assuntos
Materiais Biomiméticos/química , Domínio Catalítico , Cisteína/química , Prótons , Superóxido Dismutase/química , Superóxidos/química , Água/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Metilação , Modelos Moleculares , Conformação Molecular , Níquel/metabolismo , Oxirredução , Superóxido Dismutase/metabolismo
3.
Chem Commun (Camb) ; 49(42): 4797-9, 2013 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23608950

RESUMO

Copper coordination to soluble oligomers of the English (AßH(6)R) mutant of the amyloid-ß peptide is probed. Cu(II) coordination yields a square planar (N/O)4 coordination environment, while reduction yields an O2 inert linear bis-His Cu(I) centre.


Assuntos
Peptídeos beta-Amiloides/química , Complexos de Coordenação/química , Cobre/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/genética , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Oxigênio/química , Fragmentos de Peptídeos/genética
4.
Anal Chem ; 79(20): 7727-33, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17874848

RESUMO

A novel staining method and the associated fluorescent dye were developed for protein analysis by capillary SDS-PAGE. The method strategy is to synthesize a pseudo-SDS dye and use it to replace some of the SDS in SDS-protein complexes so that the protein can be fluorescently detected. The pseudo-SDS dye consists of a long, straight alkyl chain connected to a negative charged fluorescent head and binds to proteins just as SDS. The number of dye molecules incorporated with a protein depends on the dye concentration relative to SDS in the sample solution, since SDS and dye bind to proteins competitively. In this work, we synthesized a series of pseudo-SDS dyes, and tested their performances for capillary SDS-PAGE. FT-16 (a fluorescein molecule linked with a hexadodecyl group) seemed to be the best among all the dyes tested. Although the numbers of dye molecules bound to proteins (and the fluorescence signals from these protein complexes) were maximized in the absence of SDS, high-quality separations were obtained when co-complexes of SDS-protein-dye were formed. The migration time correlates well with protein size even after some of the SDS in the SDS-protein complexes was replaced by the pseudo-SDS dye. Under optimized experimental conditions and using a laser-induced fluorescence detector, limits of detection of as low as 0.13 ng/mL (bovine serum albumin) and dynamic ranges over 5 orders of magnitude in which fluorescence response is proportional to the square root of analyte concentration were obtained. The method and dye were also tested for separations of real-world samples from E. coli.


Assuntos
Eletroforese Capilar/métodos , Proteínas/análise , Imageamento Tridimensional , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA