Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 143(7): 1170-81, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893340

RESUMO

Astrocytes are crucial in the formation, fine-tuning, function and plasticity of neural circuits in the central nervous system. However, important questions remain about the mechanisms instructing astrocyte cell fate. We have studied astrogenesis in the ventral nerve cord of Drosophila larvae, where astrocytes exhibit remarkable morphological and molecular similarities to those in mammals. We reveal the births of larval astrocytes from a multipotent glial lineage, their allocation to reproducible positions, and their deployment of ramified arbors to cover specific neuropil territories to form a stereotyped astroglial map. Finally, we unraveled a molecular pathway for astrocyte differentiation in which the Ets protein Pointed and the Notch signaling pathway are required for astrogenesis; however, only Notch is sufficient to direct non-astrocytic progenitors toward astrocytic fate. We found that Prospero is a key effector of Notch in this process. Our data identify an instructive astrogenic program that acts as a binary switch to distinguish astrocytes from other glial cells.


Assuntos
Astrócitos/citologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas do Tecido Nervoso/genética , Neurópilo/citologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Animais , Astrócitos/metabolismo , Linhagem da Célula/fisiologia , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neuroglia/citologia , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo
2.
J Neurosci ; 36(29): 7640-7, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27445142

RESUMO

UNLABELLED: Patients with Type 6 episodic ataxia (EA6) have mutations of the excitatory amino acid transporter EAAT1 (also known as GLAST), but the underlying pathophysiological mechanism for EA6 is not known. EAAT1 is a glutamate transporter expressed by astrocytes and other glia, and it serves dual function as an anion channel. One EA6-associated mutation is a P>R substitution (EAAT1(P>R)) that in transfected cells has a reduced rate of glutamate transport and an abnormal anion conductance. We expressed this EAAT1(P>R) mutation in glial cells of Drosophila larvae and found that these larvae exhibit episodic paralysis, and their astrocytes poorly infiltrate the CNS neuropil. These defects are not seen in Eaat1-null mutants, and so they cannot be explained by loss of glutamate transport. We instead explored the role of the abnormal anion conductance of the EAAT1(P>R) mutation, and to do this we expressed chloride cotransporters in astrocytes. Like the EAAT1(P>R) mutation, the chloride-extruding K(+)-Cl(-) cotransporter KccB also caused astroglial malformation and paralysis, supporting the idea that the EAAT1(P>R) mutation causes abnormal chloride flow from CNS glia. In contrast, the Na(+)-K(+)-Cl(-) cotransporter Ncc69, which normally allows chloride into cells, rescued the effects of the EAAT1(P>R) mutation. Together, our results indicate that the cytopathology and episodic paralysis in our Drosophila EA6 model stem from a gain-of-function chloride channelopathy of glial cells. SIGNIFICANCE STATEMENT: We studied a mutation found in episodic ataxia of the dual-function glutamate transporter/anion channel EAAT1, and discovered it caused malformation of astrocytes and episodes of paralysis in a Drosophila model. These effects were mimicked by a chloride-extruding cotransporter and were rescued by restoring chloride homeostasis to glial cells with a Na(+)-K(+)-2Cl(-) cotransporter. Our findings reveal a new pathophysiological mechanism in which astrocyte cytopathology and neural circuit dysfunction arise via disruption of the ancillary function of EAAT1 as a chloride channel. In some cases, this mechanism might also be important for neurological diseases related to episodic ataxia, such as hemiplegia, migraine, and epilepsy.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Animais , Animais Geneticamente Modificados , Ataxia Cerebelar/fisiopatologia , Canais de Cloreto/metabolismo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transportador 1 de Aminoácido Excitatório/genética , Feminino , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva , Locomoção/genética , Masculino , Mutação/genética , Neuroglia/metabolismo , Estatísticas não Paramétricas , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K e Cl-
3.
Development ; 139(6): 1095-104, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22318230

RESUMO

During embryonic development, changes in cell cycle kinetics have been associated with neurogenesis. This observation suggests that specific cell cycle regulators may be recruited to modify cell cycle dynamics and influence the decision between proliferation and differentiation. In the present study, we investigate the role of core positive cell cycle regulators, the CDC25 phosphatases, in this process. We report that, in the developing chicken spinal cord, only CDC25A is expressed in domains where neural progenitors undergo proliferative self-renewing divisions, whereas the combinatorial expression of CDC25A and CDC25B correlates remarkably well with areas where neurogenesis occurs. We also establish that neural progenitors expressing both CDC25A and CDC25B have a shorter G2 phase than those expressing CDC25A alone. We examine the functional relevance of these correlations using an RNAi-based method that allows us to knock down CDC25B efficiently and specifically. Reducing CDC25B expression results in a specific lengthening of the G2 phase, whereas the S-phase length and the total cell cycle time are not significantly modified. This modification of cell cycle kinetics is associated with a reduction in neuron production that is due to the altered conversion of proliferating neural progenitor cells to post-mitotic neurons. Thus, expression of CDC25B in neural progenitors has two functions: to change cell cycle kinetics and in particular G2-phase length and also to promote neuron production, identifying new roles for this phosphatase during neurogenesis.


Assuntos
Fase G2 , Sistema Nervoso/embriologia , Células-Tronco Neurais/citologia , Neurogênese , Medula Espinal/embriologia , Fosfatases cdc25/metabolismo , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Embrião de Galinha , Células-Tronco Neurais/fisiologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Medula Espinal/citologia , Fosfatases cdc25/biossíntese
4.
J Neurosci ; 30(43): 14446-57, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980602

RESUMO

In the mammalian CNS, glial cells expressing excitatory amino acid transporters (EAATs) tightly regulate extracellular glutamate levels to control neurotransmission and protect neurons from excitotoxic damage. Dysregulated EAAT expression is associated with several CNS pathologies in humans, yet mechanisms of EAAT regulation and the importance of glutamate transport for CNS development and function in vivo remain incompletely understood. Drosophila is an advanced genetic model with only a single high-affinity glutamate transporter termed Eaat1. We found that Eaat1 expression in CNS glia is regulated by the glycosyltransferase Fringe, which promotes neuron-to-glia signaling through the Delta-Notch ligand-receptor pair during embryogenesis. We made Eaat1 loss-of-function mutations and found that homozygous larvae could not perform the rhythmic peristaltic contractions required for crawling. We found no evidence for excitotoxic cell death or overt defects in the development of neurons and glia, and the crawling defect could be induced by postembryonic inactivation of Eaat1. Eaat1 fully rescued locomotor activity when expressed in only a limited subpopulation of glial cells situated near potential glutamatergic synapses within the CNS neuropil. Eaat1 mutants had deficits in the frequency, amplitude, and kinetics of synaptic currents in motor neurons whose rhythmic patterns of activity may be regulated by glutamatergic neurotransmission among premotor interneurons; similar results were seen with pharmacological manipulations of glutamate transport. Our findings indicate that Eaat1 expression is promoted by Fringe-mediated neuron-glial communication during development and suggest that Eaat1 plays an essential role in regulating CNS neural circuits that control locomotion in Drosophila.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Locomoção/fisiologia , N-Acetilglucosaminiltransferases/fisiologia , Neuroglia/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Drosophila/genética , Eletrofisiologia , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 1 de Aminoácido Excitatório/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Larva , Mutação/fisiologia , N-Acetilglucosaminiltransferases/genética , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/fisiologia
5.
Curr Biol ; 28(22): 3700-3708.e4, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30416062

RESUMO

Sleep is critical for many aspects of brain function and is accompanied by brain-wide changes in the physiology of neurons and synapses [1, 2]. Growing evidence suggests that glial cells contribute to diverse aspects of sleep regulation, including neuronal and metabolic homeostasis [3-5], although the molecular basis for this remains poorly understood. The fruit fly, Drosophila melanogaster, displays all the behavioral and physiological characteristics of sleep [1, 2], and genetic screening in flies has identified both conserved and novel regulators of sleep and wakefulness [2, 6, 7]. With this approach, we identified Excitatory amino acid transporter 2 (Eaat2) and found that its loss from glia, but not neurons, increases sleep. We show that Eaat2 is expressed in ensheathing glia, where Eaat2 functions during adulthood to regulate sleep. Increased sleep in Eaat2-deficient flies is accompanied by reduction of metabolic rate during sleep bouts, an indicator of deeper sleep intensity. Eaat2 is a member of the conserved EAAT family of membrane transport proteins [8], raising the possibility that it affects sleep by controlling the movement of ions and neuroactive chemical messengers to and from ensheathing glia. In vitro, Eaat2 is a transporter of taurine [9], which promotes sleep when fed to flies [10]. We find that the acute effect of taurine on sleep is abolished in Eaat2 mutant flies. Together, these findings reveal a wake-promoting role for Eaat2 in ensheathing glia through a taurine-dependent mechanism.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Neuroglia/metabolismo , Sono , Taurina/metabolismo , Animais , Proteínas de Drosophila/genética , Transportador 2 de Aminoácido Excitatório/genética , Feminino , Masculino , Neuroglia/citologia , Vigília
6.
Dev Biol ; 294(1): 133-47, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16564519

RESUMO

Sonic hedgehog (Shh) signaling controls numerous aspects of vertebrate development, including proliferation of precursors in different organs. Identification of molecules that link the Shh pathway to cell cycle machinery is therefore of major importance for an understanding of the mechanisms underlying Shh-dependent proliferation. Here, we show that an actor in the control of entry into mitosis, the phosphatase CDC25B, is transcriptionally upregulated by the Shh/Gli pathway. Unlike other G2/M regulators, CDC25B is highly expressed in domains of Shh activity, including the ventral neural tube and the posterior limb bud. Loss- and gain-of-function experiments reveal that Shh contributes to CDC25B transcriptional activation in the neural tube both of chick and mouse embryos. Moreover, CDC25B transcripts are absent from the posterior limb bud of Shh-/- mice, while anterior grafts of Shh-expressing cells in the chicken limb bud induce ectopic CDC25B expression. Arresting the cell cycle does not reduce the level of CDC25B expression in the neural tube strongly suggesting that the upregulation of CDC25B is not an indirect consequence of the Shh-dependent proliferation. These data reveal an unexpected developmental link between the Shh pathway and a participant in G2/M control.


Assuntos
Proteínas de Ciclo Celular/genética , Divisão Celular/fisiologia , Fase G2/fisiologia , Transativadores/metabolismo , Fosfatases cdc25/genética , Animais , Proliferação de Células , Sistema Nervoso Central/embriologia , Embrião de Galinha , Embrião de Mamíferos , Proteínas Hedgehog , Botões de Extremidades , Camundongos , Camundongos Knockout , Transativadores/fisiologia , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA