Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(12): E2365-E2374, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28265104

RESUMO

The Hippo signaling pathway is highly conserved from Drosophila to mammals and plays a central role in maintaining organ size and tissue homeostasis. The blood-brain barrier (BBB) physiologically isolates the brain from circulating blood or the hemolymph system, and its integrity is strictly maintained to perform sophisticated neuronal functions. Until now, the underlying mechanisms of subperineurial glia (SPG) growth and BBB maintenance during development are not clear. Here, we report an miR-285-Yorkie (Yki)/Multiple Ankyrin repeats Single KH domain (Mask) double-negative feedback loop that regulates SPG growth and BBB integrity. Flies with a loss of miR-285 have a defective BBB with increased SPG ploidy and disruptive septate junctions. Mechanistically, miR-285 directly targets the Yki cofactor Mask to suppress Yki activity and down-regulates the expression of its downstream target cyclin E, a key regulator of cell cycle. Disturbance of cyclin E expression in SPG causes abnormal endoreplication, which leads to aberrant DNA ploidy and defective septate junctions. Moreover, the expression of miR-285 is increased by knockdown of yki or mask and is decreased with yki overexpression, thus forming a double-negative feedback loop. This regulatory loop is crucial for sustaining an appropriate Yki/Mask activity and cyclin E level to maintain SPG ploidy and BBB integrity. Perturbation of this signaling loop, either by dysregulated miR-285 expression or Yki activity, causes irregular SPG ploidy and BBB disruption. Furthermore, ectopic expression of miR-285 promotes canonical Hippo pathway-mediated apoptosis independent of the p53 or JNK pathway. Collectively, these results reveal an exquisite regulatory mechanism for BBB maintenance through an miR-285-Yki/Mask regulatory circuit.


Assuntos
Barreira Hematoencefálica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Animais , Ciclo Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , MicroRNAs/genética , Neuroglia/metabolismo , Proteínas Nucleares/genética , Ploidias , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/genética , Proteínas de Sinalização YAP
2.
Dev Cell ; 43(5): 603-617.e5, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29207260

RESUMO

The Hippo/Yki and RB/E2F pathways both regulate tissue growth by affecting cell proliferation and survival, but interactions between these parallel control systems are poorly defined. In this study, we demonstrate that interaction between Drosophila E2F1 and Sd disrupts Yki/Sd complex formation and thereby suppresses Yki target gene expression. RBF modifies these effects by reducing E2F1/Sd interaction. This regulation has significant effects on apoptosis, organ size, and progenitor cell proliferation. Using a combination of DamID-seq and RNA-seq, we identified a set of Yki targets that play a diversity of roles during development and are suppressed by E2F1. Further, we found that human E2F1 competes with YAP for TEAD1 binding, affecting YAP activity, indicating that this mode of cross-regulation is conserved. In sum, our study uncovers a previously unknown mechanism in which RBF and E2F1 modify Hippo signaling responses to modulate apoptosis, organ growth, and homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular , Drosophila melanogaster/citologia , Humanos , Tamanho do Órgão , Transcrição Gênica/genética , Proteínas de Sinalização YAP
3.
Sci Rep ; 6: 19418, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887613

RESUMO

Secreted Wnts play diverse roles in a non-cell-autonomous fashion. However, the cell-autonomous effect of unsecreted Wnts remains unknown. Endoplasmic reticulum (ER) stress is observed in specialized secretory cells and participates in pathophysiological processes. The correlation between Wnt secretion and ER stress remains poorly understood. Here, we demonstrated that Drosophila miR-307a initiates ER stress specifically in wingless (wg)-expressing cells through targeting wntless (wls/evi). This phenotype could be mimicked by retromer loss-of-function or porcupine (porc) depletion, and rescued by wg knockdown, arguing that unsecreted Wg triggers ER stress. Consistently, we found that disrupting the secretion of human Wnt5a also induced ER stress in mammalian cells. Furthermore, we showed that a C-terminal KKVY-motif of Wg is required for its retrograde Golgi-to-ER transport, thus inducing ER stress. Next, we investigated if COPI, the regulator of retrograde transport, is responsible for unsecreted Wg to induce ER stress. To our surprise, we found that COPI acts as a novel regulator of Wg secretion. Taken together, this study reveals a previously unknown Golgi-to-ER retrograde route of Wg, and elucidates a correlation between Wnt secretion and ER stress during development.


Assuntos
Proteínas de Drosophila/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Wnt1/metabolismo , Animais , Linhagem Celular , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico/genética , Receptores Acoplados a Proteínas G/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt1/genética
4.
Cell Signal ; 27(3): 606-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25496831

RESUMO

The Hippo signaling pathway restricts organ size by inactivating the Yorkie (Yki)/Yes-associated protein (YAP) family proteins. The oncogenic Yki/YAP transcriptional coactivator family promotes tissue growth by activating target gene transcription, but the regulation of Yki/YAP activation remains elusive. In mammalian cells, we identified Brg1, a major subunit of chromatin-remodeling SWI/SNF family proteins, which interacts with YAP. This finding led us to investigate the in vivo functional interaction of Yki and Brahma (Brm), the Drosophila homolog of Brg1. We found that Brm functions at the downstream of Hippo pathway and interacts with Yki and Scalloped (Sd) to promotes Yki-dependent transcription and tissue growth. Furthermore, we demonstrated that Brm is required for the Crumbs (Crb) dysregulation-induced Yki activation. Interestingly, we also found that crb is a downstream target of Yki-Brm complex. Brm physically binds to the promoter of crb and regulates its transcription through Yki. Together, we showed that Brm functions as a critical regulator of Hippo signaling during tissue growth and plays an important role in the feedback loop between Crb and Yki.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Tamanho do Órgão , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Transativadores/antagonistas & inibidores , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA