Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3244-8, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24611379

RESUMO

In the present paper, quantum chemistry calculations method based on the density functional theory (DFT) and surface-enhanced Raman scattering (SERS) spectroscopy technique were used to investigate the adsorption behavior and enhancement effect of thiabendazole on the nanometer silver colloid surface systematically from theoretical and experimental perspective. By sodium citrate's reduction reaction, nanometer silver colloid with has high surface-enhanced Raman scattering activity was prepared. And then the authors studied the surface-enhanced Raman scattering spectroscopy of the thiabendazole in aqueous solution. The authors carried on the detailed quantum chemistry calculations for the interaction between thiabendazole and nanometer silver colloid, using the TBZ-Ag4 model to get the adsorption properties of thiabendazole molecule on nanometer silver colloid. Combining FT-Raman spectrum with the theoretical calculation results by the B3LYP/6-311G(d) theoretical level, and the visualization of GaussianView5. 0 software, the FT-Raman vibration spectrum and the surface-enhanced Raman scattering spectroscopy of thiabendazole molecule were assigned systematically. All the theoretical and experimental results show that all atoms of thiabendazole are in one plane and the point group of thiabendazole is Cs; Thiabendazole has high surface-enhanced Raman scattering activity on nanometer silver colloid surface; the thiabendazole is absorbed on silver colloid particles by S atom, and the long axis of thiabendazole molecule is perpendicular to the nanometer silver colloid surface; the trace concentration of thiabendazole can be detected rapidly and effectively with the surface-enhanced Raman scattering spectroscopy technique. This work provides a theoretical and experimental basis for the study of thiabendazole's characteristics and its rapid detection.

2.
J Chem Phys ; 128(22): 224310, 2008 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-18554016

RESUMO

Resonance Raman spectra were obtained for benzamide in methanol and acetonitrile solutions with excitation wavelengths in resonance with the S(3) state. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with the motions mainly along the benzene ring C[Double Bond]C stretch nu(9), the Ph-CO-NH(2) and ring benzene stretch nu(14), the CCH in plane bend nu(17), the Ph-CO-NH(2) stretch and NH(2) rock nu(19), the ring trigonal bend nu(23), and the ring deformation and Ph-CO-NH(2) stretch nu(29). A preliminary resonance Raman intensity analysis was done, and the results were compared to those previously reported for acetophenone to examine the substituent effect. Solvent effect on the short-time photodissociation dynamics of benzamide was also examined. A conical intersection point S(2)S(3) between S(3) and S(2) potential energy surfaces of benzamide was determined by using a complete active space self-consistent field theory computations. The structural differences and similarities between S(3)S(2) point and S(0) were examined, and the results were used to correlate to the Franck-Condon photodissociation dynamics of benzamide in S(3) state.


Assuntos
Benzamidas/química , Elétrons , Análise Espectral Raman , Absorção , Acetofenonas/química , Fotoquímica , Solventes/química , Vibração
3.
J Phys Chem B ; 117(39): 11660-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23971973

RESUMO

The resonance Raman spectroscopic study of the excited state structural dynamics of 1,3-dimethyluracil (DMU), 5-bromo-1,3-dimethyluracil (5BrDMU), uracil, and thymine in water and acetonitrile were reported. Density functional theory calculations were carried out to help elucidate the ultraviolet electronic transitions associated with the A-, and B-band absorptions and the vibrational assignments of the resonance Raman spectra. The effect of the methylation at N1, N3 and C5 sites of pyrimidine ring on the structural dynamics of uracils in different solvents were explored on the basis of the resonance Raman intensity patterns. The relative resonance Raman intensities of DMU and 5BrDMU are computed at the B3LYP-TD level. Huge discrepancies between the experimental resonance Raman intensities and the B3LYP-TD predicted ones were observed. The underlying mechanism was briefly discussed. The decay channel through the S1((1)nπ*)/S2((1)ππ*) conical intersection and the S1((1)nπ*)/T1((3)ππ*) intersystem crossing were revealed by using the CASSCF(8,7)/6-31G(d) level of theory calculations.


Assuntos
Timina/química , Uracila/análogos & derivados , Uracila/química , Acetonitrilas/química , Metanol/química , Metilação , Modelos Moleculares , Teoria Quântica , Soluções , Solventes/química , Análise Espectral Raman , Raios Ultravioleta , Vibração , Água/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-22032972

RESUMO

FT-Raman and/or FT-IR spectra of 3-amino-2-cyclohexen-1-one (ACyO) in solid state and/or in solvents of water and acetonitrile were obtained. Density functional theory calculations were done to help elucidate the vibrational band assignments. The A-band resonance Raman spectra of ACyO were acquired in water and acetonitrile solvents to examine the excited state structural dynamics and the state-mixing or curve-crossing tuned by solvents. A preliminary resonance Raman intensity analysis using the time-dependent wave-packet theory and simple model was done for ACyO in acetonitrile solvent. Resonance Raman spectroscopic probing of the excited state curve-crossing or state-mixing was proposed.


Assuntos
Aminas/química , Cicloexanonas/química , Acetonitrilas/química , Modelos Moleculares , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Água/química
5.
J Phys Chem B ; 115(25): 8266-77, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21615104

RESUMO

The resonance Raman spectra were obtained for both 2-thiopyridone (2TP) and its proton-transfer tautomer 2-mercaptopyridine (2MP) in water solution. Density functional theory (DFT) calculations were carried out to help elucidate their ultraviolet electronic transitions and vibrational assignments of the resonance Raman spectra associated with their B-band absorptions. The nanosecond time-resolved resonance Raman spectroscopic experiment was carried out to further confirm the assignment that the transient species was the ground state 2MP. The different short-time structural dynamics were examined for both 2TP and 2MP in terms of their resonance Raman intensity patterns. The transition barriers between 2TP and 2MP for S(0), T(1), and S(1) states are determined by using (U)B3LYP-TD and CASSCF level of theory computations, respectively. The excited state proton transfer (ESPT) reaction mechanism is proposed and briefly discussed.


Assuntos
Prótons , Piridinas/química , Modelos Teóricos , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
6.
J Phys Chem A ; 111(50): 13182-92, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18031023

RESUMO

Resonance Raman spectra were obtained for 2-hydroxybenzaldehyde (OHBA) in cyclohexane solution with excitation wavelengths in resonance with the first charge-transfer/proton-transfer (CT/PT) band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal C=CH in-plane bend+ring deformation modes (nu9, nu10, nu14, nu16, nu18, nu19, nu20, nu26, nu30, nu31, and nu35) accompanied by a smaller amount of motion along the nominal C=O stretch mode (nu7), the nominal C=C-C(=O) in-plane bend modes (nu33 and nu37), and the nominal ring C-O-H in-plane bend modes (nu9 and nu14). A preliminary resonance Raman intensity analysis was done, and these results for the OHBA molecule were compared to results previously reported for the 2-hydroxyacetophenone (OHAP) molecule. Several proton-transfer tautomers in the ground and excited states were predicted from the results of B3LYP/cc-PVTZ, UB3LYP/cc-PVTZ, and CASSCF/cc-PVDZ level of theory computations. The differences and similarities between the CT/PT band resonance Raman spectra and the vibrational reorganizational energies for the OHBA molecule relative to those for the OHAP molecule are briefly discussed.


Assuntos
Aldeídos/química , Análise Espectral Raman/métodos , Prótons , Estereoisomerismo , Termodinâmica
7.
J Chem Phys ; 126(19): 194505, 2007 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-17523820

RESUMO

Resonance Raman spectra were obtained for (E)-beta-nitrostyrene in cyclohexane solution with excitation wavelengths in resonance with the charge transfer (CT)-band absorption spectrum. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal NO(2) symmetric stretch mode (nu(14)), the nominal C=C stretch mode (nu(8)), the nominal benzene ring stretch mode (nu(9)), accompanied by a smaller amount of motion along the nominal ONO symmetric bend/benzene ring stretch mode (nu(34)), the nominal CCH in-plane bending mode (nu(20)), the nominal HC=CH in-plane bending mode (nu(18)), the nominal NO(2) asymmetric stretch mode (nu(11)), the nominal C-N stretch/benzene ring breathing mode (nu(27)), and the nominal CCC trigonal bending mode (nu(25)). A preliminary resonance Raman intensity analysis was done and these results for (E)-beta-nitrostyrene were compared to results previously reported for several nitrobenzene and trans-stilbene compounds. The differences and similarities between the CT-band resonance Raman spectra and vibrational reorganizational energies for (E)-beta-nitrostyrene relative to those for nitrobenzene and trans-stilbene were briefly discussed.

8.
J Chem Phys ; 125(21): 214506, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17166032

RESUMO

Resonance Raman spectra were obtained for 2-nitrophenol in cyclohexane solution with excitation wavelengths in resonance with the charge-transfer (CT) proton transfer band absorption. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion along more than 15 normal modes: the nominal CCH bend+CC stretch nu(12) (1326 cm(-1)), the nominal CCC bend nu(23) (564 cm(-1)), the nominal CO stretch+NO stretch+CC stretch nu(14) (1250 cm(-1)), the nominal CCH bend+CC stretch+COH bend nu(15) (1190 cm(-1)); the nominal CCH bend+CC stretch nu(17) (1134 cm(-1)), the nominal CCC bend+CC stretch nu(22) (669 cm(-1)), the nominal CCN bend nu(27) (290 cm(-1)), the nominal NO(2) bend+CC stretch nu(21) (820 cm(-1)), the nominal CCO bend+CNO bend nu(25) (428 cm(-1)), the nominal CC stretch nu(7) (1590 cm(-1)), the nominal NO stretch nu(8) (1538 cm(-1)), the nominal CCC bend+NO(2) bend nu(20) (870 cm(-1)), the nominal CC stretch nu(6) (1617 cm(-1)), the nominal COH bend+CC stretch nu(11) (1382 cm(-1)), nominal CCH bend+CC stretch nu(9) (1472 cm(-1)). A preliminary resonance Raman intensity analysis was done and the results for 2-nitrophenol were compared to previously reported results for nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone. The authors briefly discuss the differences and similarities in the CT-band absorption excitation of 2-nitrophenol relative to those of nitrobenzene, p-nitroaniline, and 2-hydroxyacetophenone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA