Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32877983

RESUMO

To maximize the limited spectrum among primary users and cognitive Internet of Things (IoT) users as we save the limited power and energy resources available, there is a need to optimize network resources. Whereas it is quite complex to study the impact of transmission rate, transmission power or transmission delay alone, the complexity is aggravated by the simultaneous consideration of all these three variables jointly in addition to a channel selection variable, since it creates a non-convex problem. Our objective is to jointly optimize the three major variables; transmission power, rate and delay under constraints of Bit Error Rate (BER), interference and other channel limitations. We analyze how total power, rate and delay vary with packet size, network size, BER and interference. The resulting problem is solved using a branch-and-cut polyhedral approach. For simulation of results, we use MATLAB together with the state-of-the-art BARON software. It is observed that an increase in packet size generally leads to an increase in total rate, total power and total transmission delay. It is also observed that increasing the number of secondary users on the channel generally leads to an increased power, delay and rate.

2.
BMC Bioinformatics ; 19(1): 141, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665774

RESUMO

BACKGROUND: Recently, numerous laboratory studies have indicated that many microRNAs (miRNAs) are involved in and associated with human diseases and can serve as potential biomarkers and drug targets. Therefore, developing effective computational models for the prediction of novel associations between diseases and miRNAs could be beneficial for achieving an understanding of disease mechanisms at the miRNA level and the interactions between diseases and miRNAs at the disease level. Thus far, only a few miRNA-disease association pairs are known, and models analyzing miRNA-disease associations based on lncRNA are limited. RESULTS: In this study, a new computational method based on a distance correlation set is developed to predict miRNA-disease associations (DCSMDA) by integrating known lncRNA-disease associations, known miRNA-lncRNA associations, disease semantic similarity, and various lncRNA and disease similarity measures. The novelty of DCSMDA is due to the construction of a miRNA-lncRNA-disease network, which reveals that DCSMDA can be applied to predict potential lncRNA-disease associations without requiring any known miRNA-disease associations. Although the implementation of DCSMDA does not require known disease-miRNA associations, the area under curve is 0.8155 in the leave-one-out cross validation. Furthermore, DCSMDA was implemented in case studies of prostatic neoplasms, lung neoplasms and leukaemia, and of the top 10 predicted associations, 10, 9 and 9 associations, respectively, were separately verified in other independent studies and biological experimental studies. In addition, 10 of the 10 (100%) associations predicted by DCSMDA were supported by recent bioinformatical studies. CONCLUSIONS: According to the simulation results, DCSMDA can be a great addition to the biomedical research field.


Assuntos
Predisposição Genética para Doença , MicroRNAs/genética , Algoritmos , Área Sob a Curva , Biologia Computacional , Bases de Dados Genéticas , Humanos , Masculino , MicroRNAs/metabolismo , Modelos Genéticos , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Sensors (Basel) ; 18(7)2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996557

RESUMO

Wireless Power Transfer (WPT) technology is considered as a promising approach to make Wireless Rechargeable Sensor Network (WRSN) work perpetually. In WRSN, a vehicle exists, termed a mobile charger, which can move close to sensor nodes and charge them wirelessly. Due to the mobile charger's limited traveling distance and speed, not every node that needs to be charged may be serviced in time. Thus, in such scenario, how to make a route plan for the mobile charger to determine which nodes should be charged first is a critical issue related to the network's Quality of Service (QoS). In this paper, we propose a mobile charger's scheduling algorithm to mitigate the data loss of network by considering the node's criticality in connectivity and energy. First, we introduce a novel metric named criticality index to measure node's connectivity contribution, which is computed as a summation of node's neighbor dissimilarity. Furthermore, to reflect the node's charging demand, an indicator called energy criticality is adopted to weight the criticality index, which is a normalized ratio of the node's consumed energy to its total energy. Then, we formulate an optimization problem with the objective of maximizing total weighted criticality indexes of nodes to construct a charging tour, subject to the mobile charger's traveling distance constraint. Due to the NP-hardness of the problem, a heuristic algorithm is proposed to solve it. The heuristic algorithm includes three steps, which is spanning tree growing, tour construction and tour improvement. Finally, we compare the proposed algorithm to the state-of-art scheduling algorithms. The obtained results demonstrate that the proposed algorithm is a promising one.

4.
Bioengineering (Basel) ; 9(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36354561

RESUMO

Lately, deep learning technology has been extensively investigated for accelerating dynamic magnetic resonance (MR) imaging, with encouraging progresses achieved. However, without fully sampled reference data for training, the current approaches may have limited abilities in recovering fine details or structures. To address this challenge, this paper proposes a self-supervised collaborative learning framework (SelfCoLearn) for accurate dynamic MR image reconstruction from undersampled k-space data directly. The proposed SelfCoLearn is equipped with three important components, namely, dual-network collaborative learning, reunderampling data augmentation and a special-designed co-training loss. The framework is flexible and can be integrated into various model-based iterative un-rolled networks. The proposed method has been evaluated on an in vivo dataset and was compared to four state-of-the-art methods. The results show that the proposed method possesses strong capabilities in capturing essential and inherent representations for direct reconstructions from the undersampled k-space data and thus enables high-quality and fast dynamic MR imaging.

5.
IEEE J Biomed Health Inform ; 26(7): 3427-3434, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254998

RESUMO

More and more evidence has demonstrated that microbiota play important roles in the life processes of the human body. In recent years, various computational methods have been proposed for identifying potentially disease-associated microbes to save costs in traditional biological experiments. However, prediction performances of these methods are generally limited by outdated and incomplete datasets. And moreover, until now, there are limited studies that can provide visual predictive tools for inferring possible microbe-disease associations (MDAs) as well. Hence, in this manuscript, a novel webserver called MDADP will be proposed to identify latent MDAs, in which, a new MDA database together with interactive prediction tools for MDAs studies will be designed simultaneously. Especially, in the newly constructed MDA database, 2019 known MDAs between 58 diseases and 703 microbes have been manually collected first. And then, through adopting the average ranking method and the co-confidence method respectively, eight representative computational models have been integrated together to identify potential disease-related microbes. As a result, MDADP can provide not only interactive features for users to access and capture MDAs entities, but alsoeffective tools for users to identify candidate microbes for different diseases. To our knowledge, MDADP is the first online platform that incorporates a new MDA database with comprehensive MDA prediction tools. Therefore, we believe that it will be a valuable source of information for researches in microbiology and disease-related fields. MDADP can be accessed at http://mdadp.leelab2997.cn.


Assuntos
Algoritmos , Microbiota , Biologia Computacional/métodos , Bases de Dados Factuais , Humanos
6.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2502-2513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32305935

RESUMO

Over the years, numerous evidences have demonstrated that microbes living in the human body are closely related to human life activities and human diseases. However, traditional biological experiments are time-consuming and expensive, so it has become a research topic in bioinformatics to predict potential microbe-disease associations by adopting computational methods. In this study, a novel calculative method called BPNNHMDA is proposed to identify potential microbe-disease associations. In BPNNHMDA, a novel neural network model is first designed to infer potential microbe-disease associations, its input signal is a matrix of known microbe-disease associations, and its output signal is matrix of potential microbe-disease associations probabilities. And moreover, in the novel neural network model, a new activation function is designed to activate the hidden layer and the output layer based on the hyperbolic tangent function, and its initial connection weights are optimized by adopting Gaussian Interaction Profile kernel (GIP) similarity for microbes, which can improve the training speed of BPNNHMDA efficiently. Finally, in order to verify the performance of our prediction model, different frameworks such as the Leave-One-Out Cross Validation (LOOCV) and k-Fold Cross Validation ( k-Fold CV) are implemented on BPNNHMDA respectively. Simulation results illustrate that BPNNHMDA can achieve reliable AUCs of 0.9242, 0.9127 ± 0.0009 and 0.8955 ± 0.0018 in LOOCV, 5-Fold CV and 2-Fold CV separately, which are superior to previous state-of-the-art methods. Furthermore, case studies of inflammatory bowel disease (IBD), asthma and obesity demonstrate that BPNNHMDA has excellent prediction ability in practical applications as well.


Assuntos
Biologia Computacional/métodos , Microbioma Gastrointestinal/genética , Redes Neurais de Computação , Algoritmos , Humanos , Obesidade/genética , Obesidade/microbiologia
7.
Front Genet ; 11: 384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425979

RESUMO

Recent studies have indicated that microRNAs (miRNAs) are closely related to sundry human sophisticated diseases. According to the surmise that functionally similar miRNAs are more likely associated with phenotypically similar diseases, researchers have proposed a variety of valid computational models through integrating known miRNA-disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity to discover the potential miRNA-disease relationships in biomedical researches. Taking account of the limitations of previous computational models, a new computational model based on biased heat conduction for MiRNA-Disease Association prediction (BHCMDA) was proposed in this paper, which can achieve the AUC of 0.8890 in LOOCV (Leave-One-Out Cross Validation) and the mean AUC of 0.9060, 0.8931 under the framework of twofold cross validation, fivefold cross validation, respectively. In addition, BHCMDA was further implemented to the case studies of three vital human cancers, and simulation results illustrated that there were 88% (Esophageal Neoplasms), 92% (Colonic Neoplasms) and 92% (Lymphoma) out of top 50 predicted miRNAs having been confirmed by experimental literatures, separately, which demonstrated the good performance of BHCMDA as well. Thence, BHCMDA would be a useful calculative resource for potential miRNA-disease association prediction.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29993639

RESUMO

An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play critical roles in many important biological processes. Predicting potential lncRNA-disease associations can improve our understanding of the molecular mechanisms of human diseases and aid in finding biomarkers for disease diagnosis, treatment, and prevention. In this paper, we constructed a bipartite network based on known lncRNA-disease associations; based on this work, we proposed a novel model for inferring potential lncRNA-disease associations. Specifically, we analyzed the properties of the bipartite network and found that it closely followed a power-law distribution. Moreover, to evaluate the performance of our model, a leave-one-out cross-validation (LOOCV) framework was implemented, and the simulation results showed that our computational model significantly outperformed previous state-of-the-art models, with AUCs of 0.8825, 0.9004, and 0.9292 for known lncRNA-disease associations obtained from the LncRNADisease database, Lnc2Cancer database, and MNDR database, respectively. Thus, our approach may be an excellent addition to the biomedical research field in the future.


Assuntos
Biologia Computacional/métodos , Neoplasias/genética , RNA Longo não Codificante/genética , Bases de Dados Genéticas , Humanos , Modelos Genéticos , Modelos Estatísticos , Neoplasias/diagnóstico , Prognóstico
9.
Comput Math Methods Med ; 2018: 6789089, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853986

RESUMO

MOTIVATION: Increasing studies have demonstrated that many human complex diseases are associated with not only microRNAs, but also long-noncoding RNAs (lncRNAs). LncRNAs and microRNA play significant roles in various biological processes. Therefore, developing effective computational models for predicting novel associations between diseases and lncRNA-miRNA pairs (LMPairs) will be beneficial to not only the understanding of disease mechanisms at lncRNA-miRNA level and the detection of disease biomarkers for disease diagnosis, treatment, prognosis, and prevention, but also the understanding of interactions between diseases and LMPairs at disease level. RESULTS: It is well known that genes with similar functions are often associated with similar diseases. In this article, a novel model named PADLMP for predicting associations between diseases and LMPairs is proposed. In this model, a Disease-LncRNA-miRNA (DLM) tripartite network was designed firstly by integrating the lncRNA-disease association network and miRNA-disease association network; then we constructed the disease-LMPairs bipartite association network based on the DLM network and lncRNA-miRNA association network; finally, we predicted potential associations between diseases and LMPairs based on the newly constructed disease-LMPair network. Simulation results show that PADLMP can achieve AUCs of 0.9318, 0.9090 ± 0.0264, and 0.8950 ± 0.0027 in the LOOCV, 2-fold, and 5-fold cross validation framework, respectively, which demonstrate the reliable prediction performance of PADLMP.


Assuntos
Predisposição Genética para Doença , Neoplasias/genética , RNA Longo não Codificante , Área Sob a Curva , Humanos , MicroRNAs , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA