Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circulation ; 124(6): 731-40, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21788590

RESUMO

UNLABELLED: BACKGROUND- Reactive oxygen species serve signaling functions in the vasculature, and hypoxia has been associated with increased reactive oxygen species production. NADPH oxidase 4 (Nox4) is a reactive oxygen species-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. METHODS AND RESULTS: Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the vascular endothelial cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hindlimb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by reactive oxygen species, we probed the effect of Nox4 on eNOS. In cultured endothelial cells overexpressing Nox4, we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4, we crossed our transgenic Nox4 mice with eNOS(-/-) mice. Aortas from these mice did not demonstrate enhanced aortic sprouting, and VECad-Nox4 mice on the eNOS(-/-) background did not demonstrate enhanced recovery from hindlimb ischemia. CONCLUSIONS: Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner.


Assuntos
NADPH Oxidases/fisiologia , Neovascularização Fisiológica/fisiologia , Animais , Bovinos , Hipóxia Celular/genética , Células Cultivadas/enzimologia , GMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Indução Enzimática , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/uso terapêutico , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/terapia , Camundongos , Camundongos Transgênicos , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/fisiologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio , Proteínas Recombinantes de Fusão/fisiologia
2.
Mol Metab ; 45: 101160, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33400973

RESUMO

OBJECTIVE: The immediate signals that couple exercise to metabolic adaptations are incompletely understood. Nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) produces reactive oxygen species (ROS) and plays a significant role in metabolic and vascular adaptation during stress conditions. Our objective was to determine the role of Nox4 in exercise-induced skeletal muscle metabolism. METHODS: Mice were subjected to acute exercise to assess their immediate responses. mRNA and protein expression responses to Nox4 and hydrogen peroxide (H2O2) were measured by qPCR and immunoblotting. Functional metabolic flux was measured via ex vivo fatty acid and glucose oxidation assays using 14C-labeled palmitate and glucose, respectively. A chronic exercise regimen was also utilized and the time to exhaustion along with key markers of exercise adaptation (skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase activity) were measured. Endothelial-specific Nox4-deficient mice were then subjected to the same acute exercise regimen and their subsequent substrate oxidation was measured. RESULTS: We identified key exercise-responsive metabolic genes that depend on H2O2 and Nox4 using catalase and Nox4-deficient mice. Nox4 was required for the expression of uncoupling protein 3 (Ucp3), hexokinase 2 (Hk2), and pyruvate dehydrogenase kinase 4 (Pdk4), but not the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α). Global Nox4 deletion resulted in decreased UCP3 protein expression and impaired glucose and fatty acid oxidization in response to acute exercise. Furthermore, Nox4-deficient mice demonstrated impaired adaptation to chronic exercise as measured by the time to exhaustion and activity of skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase. Importantly, mice deficient in endothelial-Nox4 similarly demonstrated attenuated glucose and fatty acid oxidation following acute exercise. CONCLUSIONS: We report that H2O2 and Nox4 promote immediate responses to exercise in skeletal muscle. Glucose and fatty acid oxidation were blunted in the Nox4-deficient mice post-exercise, potentially through regulation of UCP3 expression. Our data demonstrate that endothelial-Nox4 is required for glucose and fatty acid oxidation, suggesting inter-tissue cross-talk between the endothelium and skeletal muscle in response to exercise.


Assuntos
Músculo Esquelético/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Ácidos Graxos/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Peróxido de Hidrogênio/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , NADPH Oxidase 4/deficiência , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio , Transcriptoma , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismo
3.
Sci Rep ; 6: 38210, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27910955

RESUMO

Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS.


Assuntos
Células Endoteliais/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipertensão/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Linhagem Celular , Células Endoteliais/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo III/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
4.
Free Radic Biol Med ; 89: 1-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26169727

RESUMO

Vascular reactive oxygen species (ROS) are known to be involved in atherosclerosis development and progression. NADPH oxidase 4 (Nox4) is a constitutively active ROS-producing enzyme that is highly expressed in the vascular endothelium. Nox4 is unique in its biology and has been implicated in vascular repair, however, the role of Nox4 in atherosclerosis is unknown. Therefore, to determine the effect of endothelial Nox4 on development of atherosclerosis, Apoe E-/- mice +/- endothelial Nox4 (ApoE-/- + EC Nox4) were fed a high cholesterol/high fat (Western) diet for 24 weeks. Significantly fewer atherosclerotic lesions were observed in the ApoE-/- + EC Nox4 mice as compared to the ApoE-/- littermates, which was most striking in the abdominal region of the aorta. In addition, markers of T cell populations were markedly different between the groups; T regulatory cell marker (FoxP3) was increased whereas T effector cell marker (T-bet) was decreased in aorta from ApoE-/- + EC Nox4 mice compared to ApoE-/- alone. We also observed decreased monokine induced by gamma interferon (MIG; CXCL9), a cytokine known to recruit and activate T cells, in plasma and tissue from ApoE-/- + EC Nox4 mice. To further investigate the link between endothelial Nox4 and MIG expression, we utilized cultured endothelial cells from our EC Nox4 transgenic mice and human cells with adenoviral overexpression of Nox4. In these cultured cells, upregulation of Nox4 attenuated endothelial cell MIG expression in response to interferon-gamma. Together these data suggest that endothelial Nox4 expression reduces MIG production and promotes a T cell distribution that favors repair over inflammation, leading to protection from atherosclerosis.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/prevenção & controle , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Western Blotting , Proliferação de Células , Células Cultivadas , Citocinas/sangue , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Técnicas Imunoenzimáticas , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NADPH Oxidase 4 , NADPH Oxidases/genética , Estresse Oxidativo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA