Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38906273

RESUMO

BACKGROUND: Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES: Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS: HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS: We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS: These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.

2.
FASEB J ; 37(6): e22939, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37130013

RESUMO

Traumatic spinal cord injury (SCI) most often leads to permanent paralysis due to the inability of axons to regenerate in the adult mammalian central nervous system (CNS). In the past, we have shown that mast cells (MCs) improve the functional outcome after SCI by suppressing scar tissue formation at the lesion site via mouse mast cell protease 6 (mMCP6). In this study, we investigated whether recombinant mMCP6 can be used therapeutically to improve the functional outcome after SCI. Therefore, we applied mMCP6 locally via an intrathecal catheter in the subacute phase after a spinal cord hemisection injury in mice. Our findings showed that hind limb motor function was significantly improved in mice that received recombinant mMCP6 compared with the vehicle-treated group. In contrast to our previous findings in mMCP6 knockout mice, the lesion size and expression levels of the scar components fibronectin, laminin, and axon-growth-inhibitory chondroitin sulfate proteoglycans were not affected by the treatment with recombinant mMCP6. Surprisingly, no difference in infiltration of CD4+ T cells and reactivity of Iba-1+ microglia/macrophages at the lesion site was observed between the mMCP6-treated mice and control mice. Additionally, local protein levels of the pro- and anti-inflammatory mediators IL-1ß, IL-2, IL-4, IL-6, IL-10, TNF-α, IFNγ, and MCP-1 were comparable between the two treatment groups, indicating that locally applied mMCP6 did not affect inflammatory processes after injury. However, the increase in locomotor performance in mMCP6-treated mice was accompanied by reduced demyelination and astrogliosis in the perilesional area after SCI. Consistently, we found that TNF-α/IL-1ß-astrocyte activation was decreased and that oligodendrocyte precursor cell (OPC) differentiation was increased after recombinant mMCP6 treatment in vitro. Mechanistically, this suggests effects of mMCP6 on reducing astrogliosis and improving (re)myelination in the spinal cord after injury. In conclusion, these data show for the first time that recombinant mMCP6 is therapeutically active in enhancing recovery after SCI.


Assuntos
Remielinização , Traumatismos da Medula Espinal , Camundongos , Animais , Gliose/tratamento farmacológico , Gliose/metabolismo , Cicatriz/tratamento farmacológico , Cicatriz/prevenção & controle , Mastócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Camundongos Knockout , Recuperação de Função Fisiológica , Modelos Animais de Doenças , Mamíferos
3.
J Immunol ; 208(1): 121-132, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872979

RESUMO

Chronic local inflammation of adipose tissue is an important feature of obesity. Serglycin is a proteoglycan highly expressed by various immune cell types known to infiltrate adipose tissue under obese conditions. To investigate if serglycin expression has an impact on diet-induced adipose tissue inflammation, we subjected Srgn +/+ and Srgn -/- mice (C57BL/6J genetic background) to an 8-wk high-fat and high-sucrose diet. The total body weight was the same in Srgn +/+ and Srgn -/- mice after diet treatment. Expression of white adipose tissue genes linked to inflammatory pathways were lower in Srgn -/- mice. We also noted reduced total macrophage abundance, a reduced proportion of proinflammatory M1 macrophages, and reduced formation of crown-like structures in adipose tissue of Srgn -/- compared with Srgn +/+ mice. Further, Srgn -/- mice had more medium-sized adipocytes and fewer large adipocytes. Differentiation of preadipocytes into adipocytes (3T3-L1) was accompanied by reduced Srgn mRNA expression. In line with this, analysis of single-cell RNA sequencing data from mouse and human adipose tissue supports that Srgn mRNA is predominantly expressed by various immune cells, with low expression in adipocytes. Srgn mRNA expression was higher in obese compared with lean humans and mice, accompanied by an increased expression of immune cell gene markers. SRGN and inflammatory marker mRNA expression was reduced upon substantial weight loss in patients after bariatric surgery. Taken together, this study introduces a role for serglycin in the regulation of obesity-induced adipose inflammation.


Assuntos
Adipócitos/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Obesidade/metabolismo , Proteoglicanas/metabolismo , RNA Mensageiro/genética , Proteínas de Transporte Vesicular/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/imunologia , Proteoglicanas/genética , Proteínas de Transporte Vesicular/genética , Redução de Peso/imunologia
4.
J Allergy Clin Immunol ; 152(5): 1312-1320.e3, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536509

RESUMO

BACKGROUND: Eosinophils contribute to the pathology of several types of disorders, in particular of allergic nature, and strategies to limit their actions are therefore warranted. OBJECTIVE: We sought to evaluate the possibility of targeting the acidic, lysosome-like eosinophil granules as a potential means of inducing eosinophil cell death. METHODS: To this end, we used monensin, an ionophoric drug that has previously been shown to permeabilize the secretory granules of mast cells, thereby inducing cell death. RESULTS: Our findings reveal that monensin induces cell death in human eosinophils, whereas neutrophils were less affected. Blockade of granule acidification reduced the effect of monensin on the eosinophils, demonstrating that granule acidity is an important factor in the mechanism of cell death. Furthermore, monensin caused an elevation of the granule pH, which was accompanied by a decrease of the cytosolic pH, hence indicating that monensin caused leakage of acidic contents from the granules into the cytosol. In agreement with a granule-targeting mechanism, transmission electron microscopy analysis revealed that monensin caused extensive morphological alterations of the eosinophil granules, as manifested by a marked loss of electron density. Eosinophil cell death in response to monensin was caspase-independent, but dependent on granzyme B, a pro-apoptotic serine protease known to be expressed by eosinophils. CONCLUSIONS: We conclude that monensin causes cell death of human eosinophils through a granule-mediated mechanism dependent on granzyme B.


Assuntos
Eosinófilos , Monensin , Humanos , Monensin/farmacologia , Monensin/metabolismo , Granzimas/metabolismo , Granzimas/farmacologia , Vesículas Secretórias/metabolismo , Grânulos Citoplasmáticos
5.
Vet Res ; 54(1): 46, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291624

RESUMO

Changes in the milk microbiota during the course of mastitis are due to the nature of a sporadic occurring disease difficult to study. In this study we experimentally induced mastitis by infusion of Escherichia coli endotoxins in one udder quarter each of nine healthy lactating dairy cows and assessed the bacteriological dynamics and the milk microbiota at four time points before and eight time points after infusion. As control, saline was infused in one udder quarter each of additionally nine healthy cows that followed the same sampling protocol. The milk microbiota was assessed by sequencing of the 16 S rRNA gene and a range of positive and negative controls were included for methodological evaluation. Two different data filtration models were used to identify and cure data from contaminating taxa. Endotoxin infused quarters responded with transient clinical signs of inflammation and increased SCC while no response was observed in the control cows. In the milk microbiota data no response to inflammation was identified. The data analysis of the milk microbiota was largely hampered by laboratory and reagent contamination. Application of the filtration models caused a marked reduction in data but did not reveal any associations with the inflammatory reaction. Our results indicate that the microbiota in milk from healthy cows is unaffected by inflammation.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Microbiota , Feminino , Animais , Bovinos , Leite , Lactação/fisiologia , Escherichia coli , Endotoxinas/toxicidade , Inflamação/veterinária , Glândulas Mamárias Animais
6.
J Allergy Clin Immunol ; 150(6): 1534-1544, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35779668

RESUMO

BACKGROUND: Mast cells are implicated in the pathogenesis of asthma, but the underlying mechanisms are not fully elucidated. Under asthmatic conditions, mast cells can relocalize to the epithelial layer and may thereby affect the functional properties of the airway epithelial cells. OBJECTIVES: Activated mast cells release large quantities of proteases from their secretory granules, including chymase and tryptase. Here we investigated whether these proteases may affect airway epithelial cells. METHODS: Primary small airway epithelial cells were treated with tryptase or chymase, and the effects on epithelial cell viability, proliferation, migration, cytokine output, and transcriptome were evaluated. RESULTS: Airway epithelial cells were relatively refractory to tryptase. In contrast, chymase had extensive effects on multiple features of the epithelial cells, with a particular emphasis on processes related to extracellular matrix (ECM) remodeling. These included suppressed expression of ECM-related genes such as matrix metalloproteinases, which was confirmed at the protein level. Further, chymase suppressed the expression of the fibronectin gene and also caused degradation of fibronectin released by the epithelial cells. Chymase was also shown to suppress the migratory capacity of the airway epithelial cells and to degrade the cell-cell contact protein E-cadherin on the epithelial cell surface. CONCLUSION: Our findings suggest that chymase may affect the regulation of ECM remodeling events mediated by airway epithelial cells, with implications for the impact of mast cells in inflammatory lung diseases such as asthma.


Assuntos
Matriz Extracelular , Mastócitos , Humanos , Células Epiteliais
7.
J Allergy Clin Immunol ; 149(2): 718-727, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34331992

RESUMO

BACKGROUND: Mast cells (MCs) have a profound impact on allergic asthma. Under such conditions, MCs undergo degranulation, resulting in the release of exceptionally large amounts of MC-restricted proteases. However, the role of these proteases in asthma is only partially understood. OBJECTIVES: We sought to test our hypothesis that MC proteases can influence the functionality of human lung fibroblasts (HLFs). METHODS: Primary HLFs were treated with MC chymase or tryptase, followed by assessment of parameters related to fibroblast function. RESULTS: HLFs underwent major morphologic changes in response to chymase, showing signs of cellular contraction, but were refractory to tryptase. However, no effects of chymase on HLF viability or proliferation were seen. Chymase, but not tryptase, had a major impact on the output of extracellular matrix-associated compounds from the HLFs, including degradation of fibronectin and collagen-1, and activation of pro-matrix metalloprotease 2. Further, chymase induced the release of various chemotactic factors from HLFs. In line with this, conditioned medium from chymase-treated HLFs showed chemotactic activity on neutrophils. Transcriptome analysis revealed that chymase induced a proinflammatory gene transcription profile in HLFs, whereas tryptase had minimal effects. CONCLUSIONS: Chymase, but not tryptase, has a major impact on the phenotype of primary airway fibroblasts by modifying their output of extracellular matrix components and by inducing a proinflammatory phenotype.


Assuntos
Asma/etiologia , Quimases/toxicidade , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mastócitos/enzimologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mastócitos/fisiologia , Transcriptoma , Triptases/toxicidade
8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108048

RESUMO

Proteoglycans are central components of the extracellular matrix (ECM) and binding partners for inflammatory chemokines. Morphological differences in the ECM and increased inflammation are prominent features of the white adipose tissues in patients with obesity. The impact of obesity and weight loss on the expression of specific proteoglycans in adipose tissue is not well known. This study aimed to investigate the relationship between adiposity and proteoglycan expression. We analyzed transcriptomic data from two human bariatric surgery cohorts. In addition, RT-qPCR was performed on adipose tissues from female and male mice fed a high-fat diet. Both visceral and subcutaneous adipose tissue depots were analyzed. Adipose mRNA expression of specific proteoglycans, proteoglycan biosynthetic enzymes, proteoglycan partner molecules, and other ECM-related proteins were altered in both human cohorts. We consistently observed more profound alterations in gene expression of ECM targets in the visceral adipose tissues after surgery (among others VCAN (p = 0.000309), OGN (p = 0.000976), GPC4 (p = 0.00525), COL1A1 (p = 0.00221)). Further, gene analyses in mice revealed sex differences in these two tissue compartments in obese mice. We suggest that adipose tissue repair is still in progress long after surgery, which may reflect challenges in remodeling increased adipose tissues. This study can provide the basis for more mechanistic studies on the role of proteoglycans in adipose tissues in obesity.


Assuntos
Tecido Adiposo , Proteoglicanas , Feminino , Humanos , Masculino , Animais , Camundongos , Proteoglicanas/genética , Proteoglicanas/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Adiposidade , Proteínas da Matriz Extracelular/metabolismo , Dieta Hiperlipídica/efeitos adversos
9.
BMC Neurosci ; 23(1): 19, 2022 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346037

RESUMO

BACKGROUND: Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. RESULTS: Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. CONCLUSIONS: Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development.


Assuntos
Doenças Neurodegenerativas , Núcleosídeo-Fosfato Quinase , Peixe-Zebra , Animais , Mutação , Doenças Neurodegenerativas/genética , Núcleosídeo-Fosfato Quinase/genética , Fosforilação , Timidina Quinase/metabolismo , Peixe-Zebra/metabolismo
10.
Exp Dermatol ; 31(11): 1729-1740, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35876458

RESUMO

Mastocytosis is a KIT-related myeloproliferative disease characterised by abnormal expansion of neoplastic mast cells (MC) in the skin or virtually any other organ system. The cutaneous form of adult-onset mastocytosis is almost invariably combined with indolent systemic involvement for which curative therapy is yet not available. Here we evaluated a concept of depleting cutaneous MCs in mastocytosis lesions ex vivo by targeting their secretory granules. Skin biopsies from mastocytosis patients were incubated with or without mefloquine, an antimalarial drug known to penetrate into acidic organelles such as MC secretory granules. Mefloquine reduced the number of dermal MCs without affecting keratinocyte proliferation or epidermal gross morphology at drug concentrations up to 40 µM. Flow cytometric analysis of purified dermal MCs showed that mefloquine-induced cell death was mainly due to apoptosis and accompanied by caspase-3 activation. However, caspase inhibition provided only partial protection against mefloquine-induced cell death, indicating predominantly caspase-independent apoptosis. Further assessments revealed that mefloquine caused an elevation of granule pH and a corresponding decrease in cytosolic pH, suggesting drug-induced granule permeabilisation. Extensive damage to the MC secretory granules was confirmed by transmission electron microscopy analysis. Further, blockade of granule acidification or serine protease activity prior to mefloquine treatment protected MCs from apoptosis, indicating that granule acidity and granule-localised serine proteases play major roles in the execution of mefloquine-induced cell death. Altogether, these findings reveal that mefloquine induces selective apoptosis of MCs by targeting their secretory granules and suggest that the drug may potentially extend its range of medical applications.


Assuntos
Mastocitose Cutânea , Mastocitose , Adulto , Humanos , Mastócitos/metabolismo , Mefloquina/metabolismo , Mastocitose Cutânea/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Secretórias/patologia , Apoptose , Caspases/metabolismo
11.
Allergy ; 77(1): 83-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33955017

RESUMO

Mast cells are (in)famous for their role in allergic diseases, but the physiological and pathophysiological roles of this ingenious cell are still not fully understood. Mast cells are important for homeostasis and surveillance of the human system, recognizing both endogenous and exogenous agents, which induce release of a variety of mediators acting on both immune and non-immune cells, including nerve cells, fibroblasts, endothelial cells, smooth muscle cells, and epithelial cells. During recent years, clinical and experimental studies on human mast cells, as well as experiments using animal models, have resulted in many discoveries that help decipher the function of mast cells in health and disease. In this review, we focus particularly on new insights into mast cell biology, with a focus on mast cell development, recruitment, heterogeneity, and reactivity. We also highlight the development in our understanding of mast cell-driven diseases and discuss the development of novel strategies to treat such conditions.


Assuntos
Hipersensibilidade , Mastócitos , Animais , Células Endoteliais , Humanos
12.
Crit Rev Food Sci Nutr ; 62(27): 7576-7590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33977840

RESUMO

Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.


Assuntos
Asma , Broncodilatadores , Anti-Inflamatórios/uso terapêutico , Suplementos Nutricionais , Humanos , Doença Pulmonar Obstrutiva Crônica
13.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163105

RESUMO

To obtain a more detailed picture of macrophage (MΦ) biology, in the current study, we analyzed the transcriptome of mouse peritoneal MΦs by RNA-seq and PCR-based transcriptomics. The results show that peritoneal MΦs, based on mRNA content, under non-inflammatory conditions produce large amounts of a number of antimicrobial proteins such as lysozyme and several complement components. They were also found to be potent producers of several chemokines, including platelet factor 4 (PF4), Ccl6, Ccl9, Cxcl13, and Ccl24, and to express high levels of both TGF-ß1 and TGF-ß2. The liver is considered to be the main producer of most complement and coagulation components. However, we can now show that MΦs are also important sources of such compounds including C1qA, C1qB, C1qC, properdin, C4a, factor H, ficolin, and coagulation factor FV. In addition, FX, FVII, and complement factor B were expressed by the MΦs, altogether indicating that MΦs are important local players in both the complement and coagulation systems. For comparison, we analyzed human peripheral blood monocytes. We show that the human monocytes shared many characteristics with the mouse peritoneal MΦs but that there were also many major differences. Similar to the mouse peritoneal MΦs, the most highly expressed transcript in the monocytes was lysozyme, and high levels of both properdin and ficolin were observed. However, with regard to connective tissue components, such as fibronectin, lubricin, syndecan 3, and extracellular matrix protein 1, which were highly expressed by the peritoneal MΦs, the monocytes almost totally lacked transcripts. In contrast, monocytes expressed high levels of MHC Class II, whereas the peritoneal MΦs showed very low levels of these antigen-presenting molecules. Altogether, the present study provides a novel view of the phenotype of the major MΦ subpopulation in the mouse peritoneum and the large peritoneal MΦs and places the transcriptome profile of the peritoneal MΦs in a broader context, including a comparison of the peritoneal MΦ transcriptome with that of human peripheral blood monocytes and the liver.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Coagulação Sanguínea , Proteínas do Sistema Complemento/imunologia , Fígado/imunologia , Macrófagos Peritoneais/imunologia , Monócitos/imunologia , Transcriptoma , Animais , Proteínas do Sistema Complemento/metabolismo , Feminino , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/metabolismo
14.
Immunol Rev ; 282(1): 198-231, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431218

RESUMO

Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.


Assuntos
Matriz Extracelular/metabolismo , Rim/patologia , Fígado/patologia , Mastócitos/fisiologia , Miocárdio/patologia , Animais , Colágeno , Modelos Animais de Doenças , Fibrose , Humanos
15.
J Pharmacol Exp Ther ; 376(2): 213-221, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33154104

RESUMO

Mouse mast cell protease 4 (mMCP-4), the murine functional analog to the human chymase, is a serine protease synthesized and stored in mast cell secretory granules. Our previous studies reported physiologic and pathologic roles for mMCP-4 in the maturation and synthesis of the vasoactive peptide endothelin-1 (ET-1) from its precursor, big ET-1. The aim of this study was to investigate the impact of mast cell degranulation or stabilization on mMCP-4-dependent pressor responses after the administration of big ET-1 or angiotensin I (Ang I). In anesthetized mice, mast cell degranulation induced by compound 48/80 (C48/80) or stabilization by cromolyn enhanced or repressed, respectively, the dose-dependent vasopressor responses to big ET-1 in wild-type (WT) mice but not in mMCP-4 knockout mice in a chymase inhibitor (TY-51469)-sensitive fashion. In addition, mMCP-4-dependent hydrolysis of the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin was depleted or enhanced in peritoneal mast cells isolated from mice pretreated with C48/80 or cromolyn, respectively. Furthermore, C48/80 or cromolyn markedly increased or abolished, respectively, ET-1 (1-31) conversion from exogenous big ET-1 in WT mice peritoneal fluid-isolated mast cells, in vitro. Finally, the vasopressor responses to Ang I were unaffected by mast cell activation or stabilization, whereas those induced by the angiotensin-converting enzyme-resistant Ang I analog, [Pro11, D-Ala12] Ang I, were potentiated by C48/80. Altogether, the present study shows that mast cell activation enhances the mMCP-4-dependent vasoactive properties of big ET-1 but not Ang I in the mouse model. SIGNIFICANCE STATEMENT: The current work demonstrates a significant role for mast cell stability in the cardiovascular pharmacology of big endothelin-1 but not angiotensin I in the murine systemic circulation.


Assuntos
Angiotensina I/farmacologia , Pressão Sanguínea , Degranulação Celular , Endotelina-1/farmacologia , Mastócitos/fisiologia , Serina Endopeptidases/metabolismo , Animais , Células Cultivadas , Quimases/antagonistas & inibidores , Cromolina Sódica/farmacologia , Inibidores Enzimáticos/farmacologia , Masculino , Estabilizadores de Mastócitos/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peritônio/citologia , Serina Endopeptidases/genética , Sulfonamidas/farmacologia , Tiofenos/farmacologia
16.
Kidney Int ; 97(3): 516-527, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866111

RESUMO

Here we investigated the role of murine mast cell protease 4 (MCPT4), the functional counterpart of human mast cell chymase, in an experimental model of renal ischemia reperfusion injury, a major cause of acute kidney injury. MCPT4-deficient mice had worsened kidney function compared to wildtype mice. MCPT4 absence exacerbated pathologic neutrophil infiltration in the kidney and increased kidney myeloperoxidase expression, cell death and necrosis. In kidneys with ischemia reperfusion injury, when compared to wildtype mice, MCPT4-deficient mice showed increased surface expression of adhesion molecules necessary for leukocyte extravasation including neutrophil CD162 and endothelial cell CD54. In vitro, human chymase mediated the cleavage of neutrophil expressed CD162 and also CD54, P- and E-Selectin expressed on human glomerular endothelial cells. MCPT4 also dampened systemic neutrophil activation after renal ischemia reperfusion injury as neutrophils expressed more CD11b integrin and produced more reactive oxygen species in MCPT4-deficient mice. Accordingly, after renal injury, neutrophil migration to an inflammatory site distal from the kidney was increased in MCPT4-deficient versus wildtype mice. Thus, contrary to the described overall aggravating role of mast cells, one granule-released mediator, the MCPT4 chymase, exhibits a potent anti-inflammatory function in renal ischemia reperfusion injury by controlling neutrophil extravasation and activation thereby limiting associated damage.


Assuntos
Injúria Renal Aguda , Quimases , Mastócitos/enzimologia , Traumatismo por Reperfusão , Injúria Renal Aguda/prevenção & controle , Animais , Células Endoteliais , Rim , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Traumatismo por Reperfusão/prevenção & controle
17.
J Neuroinflammation ; 17(1): 123, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321525

RESUMO

BACKGROUND: Itch is an unpleasant sensation that can be debilitating, especially if it is chronic and of non-histaminergic origin, as treatment options are limited. Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor that also has the ability to induce a burning, non-histaminergic pruritus when exogenously administered, by activating the endothelin A receptor (ETAR) on primary afferents. ET-1 is released endogenously by several cell-types found in the skin, including macrophages and keratinocytes. Mast cells express ETARs and can thereby be degranulated by ET-1, and mast cell proteases chymase and carboxypeptidase A3 (CPA3) are known to either generate or degrade ET-1, respectively, suggesting a role for mast cell proteases in the regulation of ET-1-induced itch. The mouse mast cell proteases (mMCPs) mMCP4 (chymase), mMCP6 (tryptase), and CPA3 are found in connective tissue type mast cells and are the closest functional homologs to human mast cell proteases, but little is known about their role in endothelin-induced itch. METHODS: In this study, we evaluated the effects of mast cell protease deficiency on scratching behavior induced by ET-1. To investigate this, mMCP knock-out and transgenic mice were injected intradermally with ET-1 and their scratching behavior was recorded and analyzed. RESULTS: CPA3-deficient mice and mice lacking all three proteases demonstrated highly elevated levels of scratching behavior compared with wild-type controls. A modest increase in the number of scratching bouts was also seen in mMCP6-deficient mice, while mMCP4-deficiency did not have any effect. CONCLUSION: Altogether, these findings identify a prominent role for the mast cell proteases, in particular CPA3, in the protection against itch induced by ET-1.


Assuntos
Carboxipeptidases A/metabolismo , Mastócitos/enzimologia , Prurido/metabolismo , Triptases/metabolismo , Animais , Tecido Conjuntivo/metabolismo , Endotelina-1/metabolismo , Endotelina-1/toxicidade , Camundongos , Camundongos Transgênicos , Prurido/induzido quimicamente
18.
Int Arch Allergy Immunol ; 181(5): 321-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32224621

RESUMO

This update on chronic urticaria (CU) focuses on the prevalence and pathogenesis of chronic spontaneous urticaria (CSU), the expanding spectrum of patient-reported outcome measures (PROMs) for assessing CU disease activity, impact, and control, as well as future treatment options for CU. This update is needed, as several recently reported findings have led to significant advances in these areas. Some of these key discoveries were first presented at past meetings of the Collegium Internationale Allergologicum (CIA). New evidence shows that the prevalence of CSU is geographically heterogeneous, high in all age groups, and increasing. Several recent reports have helped to better characterize two endotypes of CSU: type I autoimmune (or autoallergic) CSU, driven by IgE to autoallergens, and type IIb autoimmune CSU, which is due to mast cell (MC)-targeted autoantibodies. The aim of treatment in CU is complete disease control with absence of signs and symptoms as well as normalization of quality of life (QoL). This is best monitored by the use of an expanding set of PROMs, to which the Angioedema Control Test, the Cholinergic Urticaria Quality of Life Questionnaire, and the Cholinergic Urticaria Activity Score have recently been added. Current treatment approaches for CU under development include drugs that inhibit the effects of signals that drive MC activation and accumulation, drugs that inhibit intracellular pathways of MC activation and degranulation, and drugs that silence MCs by binding to inhibitory receptors. The understanding, knowledge, and management of CU are rapidly increasing. The aim of this review is to provide physicians who treat CU patients with an update on where we stand and where we will go. Many questions and unmet needs remain to be addressed, such as the development of routine diagnostic tests for type I and type IIb autoimmune CSU, the global dissemination and consistent use of PROMs to assess disease activity, impact, and control, and the development of more effective and well-tolerated long-term treatments for all forms of CU.


Assuntos
Urticária Crônica , Humanos
19.
Cell Microbiol ; 21(9): e13064, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31155820

RESUMO

Mast cells are implicated in the innate proinflammatory immune defence against bacterial insult, but the mechanisms through which mast cells respond to bacterial encounter are poorly defined. Here, we addressed this issue and show that mast cells respond vividly to wild type Streptococcus equi by up-regulating a panel of proinflammatory genes and by secreting proinflammatory cytokines. However, this response was completely abrogated when the bacteria lacked expression of sagA, whereas the lack of a range of other potential virulence genes (seeH, seeI, seeL, seeM, hasA, seM, aroB, pyrC, and recA) had no effect on the amplitude of the mast cell responses. The sagA gene encodes streptolysin S, a lytic toxin, and we next showed that the wild type strain but not a sagA-deficient mutant induced lysis of mast cells. To investigate whether host cell membrane perturbation per se could play a role in the activation of the proinflammatory response, we evaluated the effects of detergent- and pneumolysin-dependent lysis on mast cells. Indeed, exposure of mast cells to sublytic concentrations of all these agents resulted in cytokine responses of similar amplitudes as those caused by wild type streptococci. This suggests that sublytic membrane perturbation is sufficient to trigger full-blown proinflammatory signalling in mast cells. Subsequent analysis showed that the p38 and Erk1/2 signalling pathways had central roles in the proinflammatory response of mast cells challenged by either sagA-expressing streptococci or detergent. Altogether, these findings suggest that sagA-dependent mast cell membrane perturbation is a mechanism capable of activating the innate immune response upon bacterial challenge.


Assuntos
Proteínas de Bactérias/metabolismo , Inflamação/metabolismo , Mastócitos/imunologia , Streptococcus equi/genética , Streptococcus equi/patogenicidade , Estreptolisinas/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Estreptolisinas/genética , Estreptolisinas/farmacologia , Virulência/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709152

RESUMO

Tryptase is a tetrameric serine protease located within the secretory granules of mast cells. In the secretory granules, tryptase is stored in complex with negatively charged heparin proteoglycans and it is known that heparin is essential for stabilizing the enzymatic activity of tryptase. However, recent findings suggest that enzymatically active tryptase also can be found in the nucleus of murine mast cells, but it is not known how the enzmatic activity of tryptase is maintained in the nuclear milieu. Here we hypothesized that tryptase, as well as being stabilized by heparin, can be stabilized by DNA, the rationale being that the anionic charge of DNA could potentially substitute for that of heparin to execute this function. Indeed, we showed that double-stranded DNA preserved the enzymatic activity of human ß-tryptase with a similar efficiency as heparin. In contrast, single-stranded DNA did not have this capacity. We also demonstrated that DNA fragments down to 400 base pairs have tryptase-stabilizing effects equal to that of intact DNA. Further, we showed that DNA-stabilized tryptase was more efficient in degrading nuclear core histones than heparin-stabilized enzyme. Finally, we demonstrated that tryptase, similar to its nuclear localization in murine mast cells, is found within the nucleus of primary human skin mast cells. Altogether, these finding reveal a hitherto unknown mechanism for the stabilization of mast cell tryptase, and these findings can have an important impact on our understanding of how tryptase regulates nuclear events.


Assuntos
DNA/química , Mastócitos/enzimologia , Triptases/química , Células Cultivadas , Estabilidade Enzimática , Humanos , Mastócitos/química , Mastócitos/citologia , Pele/química , Pele/citologia , Pele/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA