Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2216127120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487091

RESUMO

Retroviruses and their host have coevolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T cells of HTLV-1-infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 methyltransferase of the Polycomb repressive complex 2. The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1-infected T cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-κB activation, physiologically relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1-infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing an original mode of viral restriction.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Humanos , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Linfócitos T/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a DNA
2.
Retrovirology ; 20(1): 16, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700325

RESUMO

BACKGROUND: The murine leukemia virus (MLV) has been a powerful model of pathogenesis for the discovery of genes involved in cancer. Its splice donor (SD')-associated retroelement (SDARE) is important for infectivity and tumorigenesis, but the mechanism remains poorly characterized. Here, we show for the first time that P50 protein, which is produced from SDARE, acts as an accessory protein that transregulates transcription and induces cell transformation. RESULTS: By infecting cells with MLV particles containing SDARE transcript alone (lacking genomic RNA), we show that SDARE can spread to neighbouring cells as shown by the presence of P50 in infected cells. Furthermore, a role for P50 in cell transformation was demonstrated by CCK8, TUNEL and anchorage-independent growth assays. We identified the integrase domain of P50 as being responsible for transregulation of the MLV promoter using luciferase assay and RTqPCR with P50 deleted mutants. Transcriptomic analysis furthermore revealed that the expression of hundreds of cellular RNAs involved in cancerogenesis were deregulated in the presence of P50, suggesting that P50 induces carcinogenic processes via its transcriptional regulatory function. CONCLUSION: We propose a novel SDARE-mediated mode of propagation of the P50 accessory protein in surrounding cells. Moreover, due to its transforming properties, P50 expression could lead to a cellular and tissue microenvironment that is conducive to cancer development.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Animais , Genômica , Vírus da Leucemia Murina/genética , Regiões Promotoras Genéticas , RNA
3.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543356

RESUMO

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismo
4.
PLoS Pathog ; 15(6): e1007922, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31251786

RESUMO

Adult T-cell Leukemia (ATL) is a lymphoproliferative disease of CD4+ T-cells infected with Human T-cell Leukemia Virus type I (HTLV-1). With the exception of allogeneic hematopoietic stem cell transplantation, there are no effective treatments to cure ATL, and ATL cells often acquire resistance to conventional chemotherapeutic agents. Accumulating evidence shows that development and maintenance of ATL requires key contributions from the viral protein, HTLV-1 basic leucine zipper factor (HBZ). In this study we found that HBZ activates expression of Heme Oxygenase 1 (HMOX-1), a component of the oxidative stress response that functions to detoxify free heme. Transcription of HMOX1 and other antioxidant genes is regulated by the small Mafs. These cellular basic leucine zipper (bZIP) factors control transcription by forming homo- or heterodimers among themselves or with other cellular bZIP factors that then bind Maf responsive elements (MAREs) in promoters or enhancers of antioxidant genes. Our data support a model in which HBZ activates HMOX1 transcription by forming heterodimers with the small Mafs that bind MAREs located in an upstream enhancer region. Consistent with this model, we found that HMOX-1 is upregulated in HTLV-1-transformed T-cell lines and confers these cells with resistance to heme-induced cytotoxicity. In this context, HBZ-mediated activation of HMOX-1 expression may contribute to resistance of ATL cells to certain chemotherapeutic agents. We also provide evidence that HBZ counteracts oxidative stress caused by two other HTLV-1-encoded proteins, Tax and p13. Tax induces oxidative stress as a byproduct of driving mitotic expansion of infected cells, and p13 is believed to induce oxidative stress to eliminate infected cells that have become transformed. Therefore, in this context, HBZ-mediated activation of HMOX-1 expression may facilitate transformation. Overall, this study characterizes a novel function of HBZ that may support the development and maintenance of ATL.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Transformação Celular Viral , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/biossíntese , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Leucemia-Linfoma de Células T do Adulto/metabolismo , Estresse Oxidativo , Proteínas dos Retroviridae/metabolismo , Regulação para Cima , Fatores de Transcrição de Zíper de Leucina Básica/genética , Feminino , Produtos do Gene tax/genética , Produtos do Gene tax/metabolismo , Células HEK293 , Células HeLa , Heme Oxigenase-1/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Masculino , Proteínas dos Retroviridae/genética , Transcrição Gênica
5.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30463980

RESUMO

Beyond their role in cellular RNA metabolism, DExD/H-box RNA helicases are hijacked by various RNA viruses in order to assist replication of the viral genome. Here, we identify the DExH-box RNA helicase 9 (DHX9) as a binding partner of chikungunya virus (CHIKV) nsP3 mainly interacting with the C-terminal hypervariable domain. We show that during early CHIKV infection, DHX9 is recruited to the plasma membrane, where it associates with replication complexes. At a later stage of infection, DHX9 is, however, degraded through a proteasome-dependent mechanism. Using silencing experiments, we demonstrate that while DHX9 negatively controls viral RNA synthesis, it is also required for optimal mature nonstructural protein translation. Altogether, this study identifies DHX9 as a novel cofactor for CHIKV replication in human cells that differently regulates the various steps of CHIKV life cycle and may therefore mediate a switch in RNA usage from translation to replication during the earliest steps of CHIKV replication.IMPORTANCE The reemergence of chikungunya virus (CHIKV), an alphavirus that is transmitted to humans by Aedes mosquitoes, is a serious global health threat. In the absence of effective antiviral drugs, CHIKV infection has a significant impact on human health, with chronic arthritis being one of the most serious complications. The molecular understanding of host-virus interactions is a prerequisite to the development of targeted therapeutics capable to interrupt viral replication and transmission. Here, we identify the host cell DHX9 DExH-Box helicase as an essential cofactor for early CHIKV genome translation. We demonstrate that CHIKV nsP3 protein acts as a key factor for DHX9 recruitment to replication complexes. Finally, we establish that DHX9 behaves as a switch that regulates the progression of the viral cycle from translation to genome replication. This study might therefore have a significant impact on the development of antiviral strategies.


Assuntos
Vírus Chikungunya/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , RNA Helicases DEAD-box/genética , DNA Helicases/metabolismo , Genômica , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Biossíntese de Proteínas/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , Células Vero , Replicação Viral/genética , Replicação Viral/fisiologia
6.
Virologie (Montrouge) ; 22(3): 183-191, 2018 06 01.
Artigo em Francês | MEDLINE | ID: mdl-33111675

RESUMO

There are four human T-lymphotropic viruses (HTLV-1, 2, 3, 4) that have emerged from the transmission of simian viruses. HTLV-1 was the first retrovirus to be shown to be responsible for a human pathology. The expression of retroviral genes depends mostly on their 5'LTR, but it was revealed that HTLV have a promoter in their 3'LTR, capable of transcription from the antisense strand of their genome. These transcripts can be translated into proteins named HBZ, APH-2, APH-3 and APH-4. Antisense transcription in HTLV-1 and its encoded protein HBZ have been thoroughly studied and it has been suggested that HBZ plays an important role in viral replication and the development of ATL. Very few studies have been conducted on antisense transcription from the three other viruses, although it is likely that these genes are also implicated in viral replication.

7.
J Virol ; 88(22): 13482-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210182

RESUMO

UNLABELLED: Brain-derived neurotrophic factor (BDNF) is a neurotrophin that promotes neuronal proliferation, survival, and plasticity. These effects occur through autocrine and paracrine signaling events initiated by interactions between secreted BDNF and its high-affinity receptor, TrkB. A BDNF/TrkB autocrine/paracrine signaling loop has additionally been implicated in augmenting the survival of cells representing several human cancers and is associated with poor patient prognosis. Adult T-cell leukemia (ATL) is a fatal malignancy caused by infection with the complex retrovirus human T-cell leukemia virus type 1 (HTLV-1). In this study, we found that the HTLV-1-encoded protein HBZ activates expression of BDNF, and consistent with this effect, BDNF expression is elevated in HTLV-1-infected T-cell lines compared to uninfected T cells. Expression of TrkB is also higher in HTLV-1-infected T-cell lines than in uninfected T cells. Furthermore, levels of both BDNF and TrkB mRNAs are elevated in peripheral blood mononuclear cells (PBMCs) from ATL patients, and ATL patient sera contain higher concentrations of BDNF than sera from noninfected individuals. Finally, chemical inhibition of TrkB signaling increases apoptosis in HTLV-1-infected T cells and reduces phosphorylation of glycogen synthase kinase 3ß (GSK-3ß), a downstream target in the signaling pathway. These results suggest that HBZ contributes to an active BDNF/TrkB autocrine/paracrine signaling loop in HTLV-1-infected T cells that enhances the survival of these cells. IMPORTANCE: Infection with human T-cell leukemia virus type 1 (HTLV-1) can cause a rare form of leukemia designated adult T-cell leukemia (ATL). Because ATL patients are unresponsive to chemotherapy, this malignancy is fatal. As a retrovirus, HTLV-1 integrates its genome into a host cell chromosome in order to utilize host factors for replication and expression of viral proteins. However, in infected cells from ATL patients, the viral genome is frequently modified to block expression of all but a single viral protein. This protein, known as HBZ, is therefore believed to modulate cellular pathways necessary for the leukemic state and the chemotherapeutic resistance of the cell. Here we provide evidence to support this hypothesis. We found that HBZ promotes a BDNF/TrkB autocrine/paracrine signaling pathway that is known to enhance the survival and chemotherapeutic resistance of other types of cancer cells. It is possible that inhibition of this pathway may improve treatments for ATL.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transformação Celular Viral , Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Linfócitos T/virologia , Proteínas Virais/metabolismo , Sobrevivência Celular , Humanos , Receptor trkB , Proteínas dos Retroviridae , Linfócitos T/fisiologia
8.
Cells ; 13(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39329701

RESUMO

Human endogenous retroviruses (HERVs) are retroviral sequences integrated into 8% of the human genome resulting from ancient exogenous retroviral infections. Unlike endogenous retroviruses of other mammalian species, HERVs are mostly replication and retro-transposition defective, and their transcription is strictly regulated by epigenetic mechanisms in normal cells. A significant addition to the growing body of research reveals that HERVs' aberrant activation is often associated with offsetting diseases like autoimmunity, neurodegenerative diseases, cancers, and chemoresistance. Adult T-cell leukemia/lymphoma (ATLL) is a very aggressive and chemoresistant leukemia caused by the human T-cell leukemia virus type 1 (HTLV-1). The prognosis of ATLL remains poor despite several new agents being approved in the last few years. In the present study, we compare the expression of HERV genes in CD8+-depleted PBMCs from HTLV-1 asymptomatic carriers and patients with acute ATLL. Herein, we show that HERVs are highly upregulated in acute ATLL. Our results further demonstrate that the oncoprotein Fra-2 binds the LTR region and activates the transcription of several HERV families, including HERV-H and HERV-K families. This raises the exciting possibility that upregulated HERV expression could be a key factor in ATLL development and the observed chemoresistance, potentially leading to new therapeutic strategies and significantly impacting the field of oncology and virology.


Assuntos
Retrovirus Endógenos , Leucemia-Linfoma de Células T do Adulto , Humanos , Leucemia-Linfoma de Células T do Adulto/virologia , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Sequências Repetidas Terminais/genética , Produtos do Gene env/metabolismo , Produtos do Gene env/genética
9.
J Virol ; 86(17): 9070-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22696638

RESUMO

Infection with the human T-cell leukemia virus type 1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia (ATL), a fatal malignancy characterized by the uncontrolled proliferation of virally infected CD4(+) T cells. The HTLV-1 basic leucine zipper factor (HBZ) is believed to contribute to development and maintenance of ATL. Unlike the other HTLV-1 genes, the hbz gene is encoded on the complementary strand of the provirus and therefore is not under direct control of the promoter within the 5' long terminal repeat (LTR) of the provirus. This promoter can undergo inactivating genetic or epigenetic changes during the course of ATL that eliminates expression of all viral genes except that of hbz. In contrast, repressive modifications are not known to occur on the hbz promoter located in the 3' LTR, and hbz expression has been consistently detected in all ATL patient samples. Although Sp1 regulates basal transcription from the HBZ promoter, other factors that activate transcription remain undefined. In this study, we used a proviral reporter construct deleted of the 5' LTR to show that HBZ upregulates its own expression through cooperation with JunD. Activation of antisense transcription was apparent in serum-deprived cells in which the level of JunD was elevated, and elimination of JunD expression by gene knockout or shRNA-mediated knockdown abrogated this effect. Activation through HBZ and JunD additionally required Sp1 binding at the hbz promoter. These data favor a model in which JunD is recruited to the promoter through Sp1, where it heterodimerizes with HBZ thereby enhancing its activity. Separately, hbz gene expression led to an increase in JunD abundance, and this effect correlated with emergence of features of transformed cells in immortalized fibroblasts. Overall, our results suggest that JunD represents a novel therapeutic target for the treatment of ATL.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Viral da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/genética , Leucemia-Linfoma de Células T do Adulto/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Antissenso/genética , Sequências Repetidas Terminais , Proteínas Virais/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linhagem Celular , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Humanos , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/virologia , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , RNA Antissenso/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Regulação para Cima , Proteínas Virais/genética
10.
Blood ; 118(9): 2483-91, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21505188

RESUMO

A determinant of human T-lymphotropic virus-1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) development is the HTLV-1-infected cell burden. Viral proteins Tax and HBZ, encoded by the sense and antisense strands of the pX region, respectively, play key roles in HTLV-1 persistence. Tax drives CD4(+)-T cell clonal expansion and is the immunodominant viral antigen recognized by the immune response. Valproate (2-n-propylpentanoic acid, VPA), a histone deacetylase inhibitor, was thought to trigger Tax expression, thereby exposing the latent HTLV-1 reservoir to immune destruction. We evaluated the impact of VPA on Tax, Gag, and HBZ expressions in cultured lymphocytes from HTLV-1 asymptomatic carriers and HAM/TSP patients. Approximately one-fifth of provirus-positive CD4(+) T cells spontaneously became Tax-positive, but this fraction rose to two-thirds of Tax-positive-infected cells when cultured with VPA. Valproate enhanced Gag-p19 release. Tax- and Gag-mRNA levels peaked spontaneously, before declining concomitantly to HBZ-mRNA increase. VPA enhanced and prolonged Tax-mRNA expression, whereas it blocked HBZ expression. Our findings suggest that, in addition to modulating Tax expression, another mechanism involving HBZ repression might determine the outcome of VPA treatment on HTLV-1-infected-cell proliferation and survival.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Produtos do Gene tax/biossíntese , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Ácido Valproico/farmacologia , Proteínas Virais/biossíntese , Elementos Antissenso (Genética)/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Doenças Assintomáticas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/virologia , Genes gag , Genes pX , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/virologia , Paraparesia Espástica Tropical , Provírus/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Viral/biossíntese , RNA Viral/genética , Proteínas dos Retroviridae , Proteínas Virais/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA