Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Cell ; 162(2): 375-390, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186191

RESUMO

Autism spectrum disorder (ASD) is a disorder of brain development. Most cases lack a clear etiology or genetic basis, and the difficulty of re-enacting human brain development has precluded understanding of ASD pathophysiology. Here we use three-dimensional neural cultures (organoids) derived from induced pluripotent stem cells (iPSCs) to investigate neurodevelopmental alterations in individuals with severe idiopathic ASD. While no known underlying genomic mutation could be identified, transcriptome and gene network analyses revealed upregulation of genes involved in cell proliferation, neuronal differentiation, and synaptic assembly. ASD-derived organoids exhibit an accelerated cell cycle and overproduction of GABAergic inhibitory neurons. Using RNA interference, we show that overexpression of the transcription factor FOXG1 is responsible for the overproduction of GABAergic neurons. Altered expression of gene network modules and FOXG1 are positively correlated with symptom severity. Our data suggest that a shift toward GABAergic neuron fate caused by FOXG1 is a developmental precursor of ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/patologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Telencéfalo/embriologia , Feminino , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Megalencefalia/genética , Megalencefalia/patologia , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Organoides/patologia , Telencéfalo/patologia
2.
Cereb Cortex ; 33(11): 6633-6647, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36721890

RESUMO

The common intersection of autism and transgender identities has been described in clinical and community contexts. This study investigates autism-related neurophenotypes among transgender youth. Forty-five transgender youth, evenly balanced across non-autistic, slightly subclinically autistic, and full-criteria autistic subgroupings, completed resting-state functional magnetic resonance imaging to examine functional connectivity. Results confirmed hypothesized default mode network (DMN) hub hyperconnectivity with visual and motor networks in autism, partially replicating previous studies comparing cisgender autistic and non-autistic adolescents. The slightly subclinically autistic group differed from both non-autistic and full-criteria autistic groups in DMN hub connectivity to ventral attention and sensorimotor networks, falling between non-autistic and full-criteria autistic groups. Autism traits showed a similar pattern to autism-related group analytics, and also related to hyperconnectivity between DMN hub and dorsal attention network. Internalizing, gender dysphoria, and gender minority-related stigma did not show connectivity differences. Connectivity differences within DMN followed previously reported patterns by designated sex at birth (i.e. female birth designation showing greater within-DMN connectivity). Overall, findings suggest behavioral diagnostics and autism traits in transgender youth correspond to observable differences in DMN hub connectivity. Further, this study reveals novel neurophenotypic characteristics associated with slightly subthreshold autism, highlighting the importance of research attention to this group.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Pessoas Transgênero , Recém-Nascido , Humanos , Adolescente , Feminino , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem
3.
Brain ; 145(1): 378-387, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34050743

RESUMO

The biological mechanisms underlying the greater prevalence of autism spectrum disorder in males than females remain poorly understood. One hypothesis posits that this female protective effect arises from genetic load for autism spectrum disorder differentially impacting male and female brains. To test this hypothesis, we investigated the impact of cumulative genetic risk for autism spectrum disorder on functional brain connectivity in a balanced sample of boys and girls with autism spectrum disorder and typically developing boys and girls (127 youth, ages 8-17). Brain connectivity analyses focused on the salience network, a core intrinsic functional connectivity network which has previously been implicated in autism spectrum disorder. The effects of polygenic risk on salience network functional connectivity were significantly modulated by participant sex, with genetic load for autism spectrum disorder influencing functional connectivity in boys with and without autism spectrum disorder but not girls. These findings support the hypothesis that autism spectrum disorder risk genes interact with sex differential processes, thereby contributing to the male bias in autism prevalence and proposing an underlying neurobiological mechanism for the female protective effect.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adolescente , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Mapeamento Encefálico , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
4.
Cereb Cortex ; 32(20): 4371-4385, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-35059702

RESUMO

Aggressive behavior is common across childhood-onset psychiatric disorders and is associated with impairments in social cognition and communication. The present study examined whether amygdala connectivity and reactivity during face emotion processing in children with maladaptive aggression are moderated by social impairment. This cross-sectional study included a well-characterized transdiagnostic sample of 101 children of age 8-16 years old with clinically significant levels of aggressive behavior and 32 typically developing children without aggressive behavior. Children completed a face emotion perception task of fearful and calm faces during functional magnetic resonance imaging. Aggressive behavior and social functioning were measured by standardized parent ratings. Relative to controls, children with aggressive behavior showed reduced connectivity between the amygdala and the dorsolateral prefrontal cortex (PFC) during implicit emotion processing. In children with aggressive behavior, the association between reduced amygdala-ventrolateral PFC connectivity and greater severity of aggression was moderated by greater social impairment. Amygdala reactivity to fearful faces was also associated with severity of aggressive behavior for children without social deficits but not for children with social deficits. Social impairments entail difficulties in interpreting social cues and enacting socially appropriate responses to frustration or provocation, which increase the propensity for an aggressive response via diminished connectivity between the amygdala and the ventral PFC.


Assuntos
Tonsila do Cerebelo , Córtex Pré-Frontal , Adolescente , Agressão/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Criança , Estudos Transversais , Emoções/fisiologia , Expressão Facial , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem
5.
Cereb Cortex ; 32(16): 3406-3422, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34875687

RESUMO

Autism spectrum disorder (ASD) and schizophrenia (SZ) are separate clinical entities but share deficits in social-emotional processing and static neural functional connectivity patterns. We compared patients' dynamic functional network connectivity (dFNC) state engagement with typically developed (TD) individuals during social-emotional processing after initially characterizing such dynamics in TD. Young adults diagnosed with ASD (n = 42), SZ (n = 41), or TD (n = 55) completed three functional MRI runs, viewing social-emotional videos with happy, sad, or neutral content. We examined dFNC of 53 spatially independent networks extracted using independent component analysis and applied k-means clustering to windowed dFNC matrices, identifying four unique whole-brain dFNC states. TD showed differential engagement (fractional time, mean dwell time) in three states as a function of emotion. During Happy videos, patients spent less time than TD in a happy-associated state and instead spent more time in the most weakly connected state. During Sad videos, only ASD spent more time than TD in a sad-associated state. Additionally, only ASD showed a significant relationship between dFNC measures and alexithymia and social-emotional recognition task scores, potentially indicating different neural processing of emotions in ASD and SZ. Our results highlight the importance of examining temporal whole-brain reconfiguration of FNC, indicating engagement in unique emotion-specific dFNC states.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Emoções , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
6.
Dev Psychobiol ; 65(7): e22415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37860899

RESUMO

Autistic and comparison individuals differ in resting-state electroencephalography (EEG), such that sex and age explain variability within and between groups. Pubertal maturation and timing may further explain variation, as previous work has suggested alterations in pubertal timing in autistic youth. In a sample from two studies of 181 autistic and 94 comparison youth (8 years to 17 years and 11 months), mixed-effects linear regressions were conducted to assess differences in EEG (midline power for theta, alpha, and beta frequency bands). Alpha power was analyzed as a mediator in the relation between pubertal maturation and timing with autistic traits in the autistic groups to understand the role of puberty in brain-based changes that contribute to functional outcomes. Individuals advanced in puberty exhibited decreased power in all bands. Those who experienced puberty relatively early showed decreased power in theta and beta bands, controlling for age, sex, and diagnosis. Autistic individuals further along in pubertal development exhibited lower social skills. Alpha mediated the relation between puberty and repetitive behaviors. Pubertal maturation and timing appear to play unique roles in the development of cognitive processes for autistic and comparison youth and should be considered in research on developmental variation in resting-state EEG.


Assuntos
Transtorno Autístico , Humanos , Adolescente , Eletroencefalografia , Encéfalo , Puberdade , Habilidades Sociais
7.
Brain ; 144(6): 1911-1926, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33860292

RESUMO

Females versus males are less frequently diagnosed with autism spectrum disorder (ASD), and while understanding sex differences is critical to delineating the systems biology of the condition, female ASD is understudied. We integrated functional MRI and genetic data in a sex-balanced sample of ASD and typically developing youth (8-17 years old) to characterize female-specific pathways of ASD risk. Our primary objectives were to: (i) characterize female ASD (n = 45) brain response to human motion, relative to matched typically developing female youth (n = 45); and (ii) evaluate whether genetic data could provide further insight into the potential relevance of these brain functional differences. For our first objective we found that ASD females showed markedly reduced response versus typically developing females, particularly in sensorimotor, striatal, and frontal regions. This difference between ASD and typically developing females does not resemble differences between ASD (n = 47) and typically developing males (n = 47), even though neural response did not significantly differ between female and male ASD. For our second objective, we found that ASD females (n = 61), versus males (n = 66), showed larger median size of rare copy number variants containing gene(s) expressed in early life (10 postconceptual weeks to 2 years) in regions implicated by the typically developing female > female functional MRI contrast. Post hoc analyses suggested this difference was primarily driven by copy number variants containing gene(s) expressed in striatum. This striatal finding was reproducible among n = 2075 probands (291 female) from an independent cohort. Together, our findings suggest that striatal impacts may contribute to pathways of risk in female ASD and advocate caution in drawing conclusions regarding female ASD based on male-predominant cohorts.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Caracteres Sexuais , Adolescente , Criança , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Variações do Número de Cópias de DNA , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem/métodos
8.
Cereb Cortex ; 30(9): 5107-5120, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32350530

RESUMO

Autism spectrum disorder (ASD) is associated with the altered functional connectivity of 3 neurocognitive networks that are hypothesized to be central to the symptomatology of ASD: the salience network (SN), default mode network (DMN), and central executive network (CEN). Due to the considerably higher prevalence of ASD in males, however, previous studies examining these networks in ASD have used primarily male samples. It is thus unknown how these networks may be differentially impacted among females with ASD compared to males with ASD, and how such differences may compare to those observed in neurotypical individuals. Here, we investigated the functional connectivity of the SN, DMN, and CEN in a large, well-matched sample of girls and boys with and without ASD (169 youth, ages 8-17). Girls with ASD displayed greater functional connectivity between the DMN and CEN than boys with ASD, whereas typically developing girls and boys differed in SN functional connectivity only. Together, these results demonstrate that youth with ASD exhibit altered sex differences in these networks relative to what is observed in typical development, and highlight the importance of considering sex-related biological factors and participant sex when characterizing the neural mechanisms underlying ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Caracteres Sexuais , Adolescente , Mapeamento Encefálico/métodos , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
9.
J Craniofac Surg ; 32(5): 1721-1726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534301

RESUMO

INTRODUCTION: In this study, the authors seek to clarify the neurological changes before and after whole vault cranioplasty (WVC) in patients born with sagittal craniosynostosis. METHODS: A case control study design was performed that included thirty functional MRI scans, from 25 individual patients. Functional MRI and diffusion tension imaging data were analyzed with BioImageSuite (Yale University, USA). 9 functional brain networks were analyzed, with appropriate correlated functional regions of the brain and utilized for analysis. RESULTS: Comparing functional MRI the infants after WVC versus infants before WVC group, the after WVC group demonstrated an increased connectivity in the left frontoparietal, secondary (V2), and third (V3) visual networks (P < 0.001). The right frontoparietal (RFPN) had decreased connectivity (P < 0.001). There is also a decrease and increase in anisotropy in the cingulum and precuneus despite surgery, respectively (P < 0.05). Adolescents treated with WVC compared to controls, demonstrated an increased connectivity in the salience and decreased connectivity in the RFPN relative to adolescent controls. CONCLUSIONS: Patients born with sagittal craniosynostosis have different connections in infancy in most of the defined cerebral networks compared to controls. After surgery, there are specific connectivity changes that occur in the RFPN, left frontoparietal, V2, and V3 networks, which are areas associated with executive function and emotional control. Changes identified in white matter tract microstructure connections could be influential in changes in functional connectivity. Although, as a child with sagittal craniosynostosis develops, much of the abnormal network connections, seen in infancy preoperatively, corrects to some degree after surgery. However, some aberrancies in the salience and RFPN networks remain potentially affecting executive functioning.


Assuntos
Craniossinostoses , Imageamento por Ressonância Magnética , Adolescente , Encéfalo , Estudos de Casos e Controles , Criança , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Humanos , Lactente , Rede Nervosa
10.
J Neurosci ; 38(4): 974-988, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29255008

RESUMO

As adolescents transition to the complex world of adults, optimizing predictions about others' preferences becomes vital for successful social interactions. Mounting evidence suggests that these social learning processes are affected by ongoing brain development across adolescence. A mechanistic understanding of how adolescents optimize social predictions and how these learning strategies are implemented in the brain is lacking. To fill this gap, we combined computational modeling with functional neuroimaging. In a novel social learning task, male and female human adolescents and adults predicted the preferences of peers and could update their predictions based on trial-by-trial feedback about the peers' actual preferences. Participants also rated their own preferences for the task items and similar additional items. To describe how participants optimize their inferences over time, we pitted simple reinforcement learning models against more specific "combination" models, which describe inferences based on a combination of reinforcement learning from past feedback and participants' own preferences. Formal model comparison revealed that, of the tested models, combination models best described how adults and adolescents update predictions of others. Parameter estimates of the best-fitting model differed between age groups, with adolescents showing more conservative updating. This developmental difference was accompanied by a shift in encoding predictions and the errors thereof within the medial prefrontal and fusiform cortices. In the adolescent group, encoding of own preferences and prediction errors scaled with parent-reported social traits, which provides additional external validity for our learning task and the winning computational model. Our findings thus help to specify adolescent-specific social learning processes.SIGNIFICANCE STATEMENT Adolescence is a unique developmental period of heightened awareness about other people. Here we probe the suitability of various computational models to describe how adolescents update their predictions of others' preferences. Within the tested model space, predictions of adults and adolescents are best described by the same learning model, but adolescents show more conservative updating. Compared with adults, brain activity of adolescents is modulated less by predictions themselves and more by prediction errors per se, and this relationship scales with adolescents' social traits. Our findings help specify social learning across adolescence and generate hypotheses about social dysfunctions in psychiatric populations.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiologia , Percepção Social , Teoria da Mente/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Simulação por Computador , Feminino , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
11.
J Craniofac Surg ; 30(6): 1719-1723, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31022138

RESUMO

PURPOSE: Long-term neurocognitive sequelae of nonsyndromic craniosynostosis (NSC) patients are just beginning to be clarified. This study uses functional MRI (fMRI) to determine if there is evidence of altered brain functional connectivity in NSC, and whether these aberrations vary by form of synostosis. METHODS: Twenty adolescent participants with surgically treated NSC (10 sagittal synostosis, 5 right unilateral coronal synostosis [UCS], 5 metopic synostosis [MSO]) were individually matched to controls by age, gender, and handedness. A subgroup of MSO was classified as severe metopic synostosis (SMS) based on the endocranial bifrontal angle. Resting state fMRI was acquired in a 3T Siemens TIM Trio scanner (Erlangen, Germany), and data were motion corrected and then analyzed with BioImage Suite (Yale School of Medicine). Resulting group-level t-maps were cluster corrected with nonparametric permutation tests. A region of interest analysis was performed based on the left Brodmann's Areas 7, 39, and 40. RESULTS: Sagittal synostosis had decreased whole-brain intrinsic connectivity compared to controls in the superior parietal lobules and the angular gyrus (P = 0.071). Unilateral coronal synostosis had decreased intrinsic connectivity throughout the prefrontal cortex (P = 0.031). The MSO cohort did not have significant findings on intrinsic connectivity, but the SMS subgroup had significantly decreased connectivity among multiple subcortical structures. CONCLUSION: Sagittal synostosis had decreased connectivity in regions associated with visuomotor integration and attention, while UCS had decreased connectivity in circuits crucial in executive function and cognition. Finally, severity of metopic synostosis may influence the degree of neurocognitive aberration. This study provides data suggestive of long-term sequelae of NSC that varies by suture type, which may underlie different phenotypes of neurocognitive impairment.


Assuntos
Encéfalo/fisiopatologia , Craniossinostoses/fisiopatologia , Adolescente , Criança , Estudos de Coortes , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/cirurgia , Humanos , Imageamento por Ressonância Magnética , Suturas
12.
J Craniofac Surg ; 30(2): 497-502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30676447

RESUMO

OBJECTIVE: The purpose of this study is to investigate further findings that corroborate similarities between corrected sagittal craniosynostosis and attention deficit hyperactivity disorder (ADHD). The aim is to further characterize the neurocognitive deficits seen in adolescents with corrected craniosynostosis by comparing it to established learning deficits such as ADHD. METHODS: A total of 30 functional magnetic resonance imaging (fMRI) of 10 sagittal nonsyndromic craniosynostosis (sNSC), 10 ADHD-combined, and 10 control adolescents were studied. The fMRI scans were analyzed utilizing Statistical Parametric Mapping (University College London, UK) and analyzed with BioImageSuite (Yale University, New Haven, CT). RESULTS: The ADHD has lower connectivity to Brodmann area (BA) 11 (Montreal Neurological Institution [MNI]: -12,26,-21), BA20 (MNI: 62,-24,-25), and BA21 (MNI: 62,-32,-23) compared to sNSC and controls (P < 0.001). The sNSC has a unique visuospatial defect, compared to ADHD, created by decreased connectivity to BA31 (MNI: -3,-68,37), BA7 (MNI: -4,-68,41), BA19 (MNI: 0,-83,31), visual association cortex (MNI: -4,-78,22), and primary visual cortex (MNI: 7,-74,21) (P < 0.001). CONCLUSION: Patients born with sNSC have different neural connections than children born with ADHD. Patients born with sNSC have decreased connections in areas of visual processing and increased connections in areas of attention and auditory processing than patients with ADHD. Therefore, children with sagittal craniosynsotosis may have learning difficulties that, similar, yet different from ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Craniossinostoses/complicações , Deficiências da Aprendizagem/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Criança , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/psicologia , Craniossinostoses/cirurgia , Feminino , Humanos , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/fisiopatologia , Masculino , Estudos Prospectivos
13.
J Craniofac Surg ; 30(4): 968-973, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30882572

RESUMO

INTRODUCTION: The purpose of this study is to understand the neurological differences between patients born with combined sagittal and metopic craniosynostosis (SMc) and isolated sagittal craniosynostosis (ISc) by studying aberrations in functional brain connectivity and white matter microstructure, before surgery, utilizing functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). METHODS: The authors collected DTI and resting-state (ie, no sedation and asleep) functional connectivity MRI data in 10 infant patients preoperatively: 5 in the SMc group (4.3 ±â€Š1 months) and 5 in the ISc group (4.8 ±â€Š1.1 months). Resting state fMRI imaging and DTI data were acquired using a 3-T Siemens Trio MRI system (Erlangen, Germany) while the infant patients slept. fMRI data were corrected for movement using SPM, underwent cerebrospinal fluid and white matter signal regression and further analyzed with BioImageSuite. For the DTI data, 3 diffusion runs were averaged, processed utilizing FMRIB Software Library, and analyzed statistically using BioImageSuite. RESULTS: Comparing the SMc versus ISc groups, SMc demonstrated that there was increased connectivity, statistically significant differences, in neural networks between children with sagittal synostosis alone versus those with sagittal with metopic synostosis, in the right BA 31 and BA 23 (corresponding to the posterior cingulate cortex (PCC) (P < 0.001). Analysis of the DTI revealed increased fractional anisotropy (normal maturation of white tracts) in the SMc group in the cingulum compared to the ISc group (P < 0.05). Differences in the functional networks include increased connectivity right frontoparietal network (RFPN) in ISc and increased connectivity in the primary visual network (V1) in SMc (P < 0.001). CONCLUSION: The SMc had increased connectivity as measured by fMR in the PCC, an area associated with attention deficit hyperactivity disorder. The DTI analysis demonstrated an increase in fractional anisotropy of the cingulum in the SMc group, a white matter tract projecting from the cingulate cortex; connections of the limbic (emotional regulation) system are instrumental. In SMc, increase of connectivity in the PCC correlates with an increase in maturation of the cingulum compared to ISc. There is increased connectivity of the RFPN network in the ISc and increased connectivity of the V1 network in the SMc patients. The SMc group has increased connectivity in the PCC, the original seed of the DMN network, and decreased connectivity to the RFPN network. The pattern of increased connectivity in the area of the DMN and decreased connectivity in the RFPN network is similar to the trend when comparing ADHD patients to normal controls. SMc has more similar functional network connectivity to ADHD as compared to ISc.


Assuntos
Craniossinostoses , Estudos de Coortes , Craniossinostoses/diagnóstico por imagem , Craniossinostoses/epidemiologia , Craniossinostoses/fisiopatologia , Humanos , Lactente , Imageamento por Ressonância Magnética
14.
Cogn Affect Behav Neurosci ; 18(1): 155-166, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29404917

RESUMO

Tactile interactions are of developmental importance to social and emotional interactions across species. In beginning to understand the affective component of tactile stimulation, research has begun to elucidate the neural mechanisms that underscore slow, affective touch. Here, we extended this emerging body of work and examined whether affective touch (C tactile [CT]-optimal speed), as compared to nonaffective touch (non-CT-optimal speed) and no touch conditions, modulated EEG oscillations. We report an attenuation in alpha and beta activity to affective and nonaffective touch relative to the no touch condition. Further, we found an attenuation in theta activity specific to the affective, as compared to the nonaffective touch and no touch conditions. Similar to theta, we also observed an attenuation of beta oscillations during the affective touch condition, although only in parietal scalp sites. Decreased activity in theta and parietal-beta ranges may reflect attentional-emotional regulatory mechanisms; however, future work is needed to provide insight into the potential neural coupling between theta and beta and their specific role in encoding slow, tactile stimulation.


Assuntos
Afeto/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Emoções/fisiologia , Percepção do Tato/fisiologia , Adulto , Feminino , Humanos , Masculino , Tato/fisiologia , Adulto Jovem
15.
Hum Brain Mapp ; 38(4): 1914-1932, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28150911

RESUMO

Growing evidence suggests that posterior cerebellar lobe contributes to social perception in healthy adults. However, they know little about how this process varies across age and with development. Using cross-sectional fMRI data, they examined cerebellar response to biological (BIO) versus scrambled (SCRAM) motion within typically developing (TD) and autism spectrum disorder (ASD) samples (age 4-30 years old), characterizing cerebellar response and BIO > SCRAM-selective effective connectivity, as well as associations with age and social ability. TD individuals recruited regions throughout cerebellar posterior lobe during BIO > SCRAM, especially bilateral lobule VI, and demonstrated connectivity with right posterior superior temporal sulcus (RpSTS) in left VI, Crus I/II, and VIIIb. ASD individuals showed BIO > SCRAM activity in left VI and left Crus I/II, and bilateral connectivity with RpSTS in Crus I/II and VIIIb/IX. No between-group differences emerged in well-matched subsamples. Among TD individuals, older age predicted greater BIO > SCRAM response in left VIIb and left VIIIa/b, but reduced connectivity between RpSTS and widespread regions of the right cerebellum. In ASD, older age predicted greater response in left Crus I and bilateral Crus II, but decreased effective connectivity with RpSTS in bilateral Crus I/II. In ASD, increased BIO > SCRAM signal in left VI/Crus I and right Crus II, VIIb, and dentate predicted lower social symptomaticity; increased effective connectivity with RpSTS in right Crus I/II and bilateral VI and I-V predicted greater symptomaticity. These data suggest that posterior cerebellum contributes to the neurodevelopment of social perception in both basic and clinical populations. Hum Brain Mapp 38:1914-1932, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Transtorno Autístico/patologia , Transtorno Autístico/fisiopatologia , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Percepção de Movimento/fisiologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxigênio/sangue , Adulto Jovem
16.
J Child Psychol Psychiatry ; 58(4): 411-435, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28102566

RESUMO

BACKGROUND: Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD + ID), autism with a history of developmental regression (ASD + R), and minimally verbal autism (ASD + MV) are understudied generally, and especially in the domain of neuroimaging. However, neuroimaging methods are a potentially powerful tool for understanding the etiology of these ASD subtypes. SCOPE AND METHODOLOGY: This review evaluates existing neuroimaging research on ASD + MV, ASD + ID, and ASD + R, identified by a search of the literature using the PubMed database, and discusses methodological, theoretical, and practical considerations for future research involving neuroimaging assessment of these populations. FINDINGS: There is a paucity of neuroimaging research on ASD + ID, ASD + MV, and ASD + R, and what findings do exist are often contradictory, or so sparse as to be ungeneralizable. We suggest that while greater sample sizes and more studies are necessary, more important would be a paradigm shift toward multimodal (e.g. imaging genetics) approaches that allow for the characterization of heterogeneity within etiologically diverse samples.


Assuntos
Transtorno do Espectro Autista , Pesquisa Biomédica/tendências , Neuroimagem/tendências , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Humanos
17.
Cereb Cortex ; 26(6): 2705-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26048952

RESUMO

C-tactile (CT) afferents encode caress-like touch that supports social-emotional development, and stimulation of the CT system engages the insula and cortical circuitry involved in social-emotional processing. Very few neuroimaging studies have investigated the neural mechanisms of touch processing in people with autism spectrum disorder (ASD), who often exhibit atypical responses to touch. Using functional magnetic resonance imaging, we evaluated the hypothesis that children and adolescents with ASD would exhibit atypical brain responses to CT-targeted touch. Children and adolescents with ASD, relative to typically developing (TD) participants, exhibited reduced activity in response to CT-targeted (arm) versus non-CT-targeted (palm) touch in a network of brain regions known to be involved in social-emotional information processing including bilateral insula and insular operculum, the right posterior superior temporal sulcus, bilateral temporoparietal junction extending into the inferior parietal lobule, right fusiform gyrus, right amygdala, and bilateral ventrolateral prefrontal cortex including the inferior frontal and precentral gyri, suggesting atypical social brain hypoactivation. Individuals with ASD (vs. TD) showed an enhanced response to non-CT-targeted versus CT-targeted touch in the primary somatosensory cortex, suggesting atypical sensory cortical hyper-reactivity.


Assuntos
Afeto/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Percepção do Tato/fisiologia , Adolescente , Braço/fisiopatologia , Transtorno do Espectro Autista/psicologia , Mapeamento Encefálico , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
18.
J Neuropsychiatry Clin Neurosci ; 28(1): 49-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26404174

RESUMO

This study was conducted to identify a potential neuroendophenotype for autism using diffusion tensor imaging. Whole-brain, voxel-based analysis of fractional anisotropy was conducted in 50 children: 19 with autism, 20 unaffected siblings, and 11 controls. Relative to controls, participants with autism exhibited bilateral reductions in fractional anisotropy across association, commissure, and projection fibers. The most severely affected tracts included the uncinate fasciculus, forceps minor, and inferior fronto-occipital fasciculus. Unaffected siblings also exhibited reductions in fractional anisotropy, albeit less severe with fewer affected tracts, sparing the uncinate fasciculus and forceps minor. These results suggest the presence of a neuroendophenotype for autism.


Assuntos
Transtorno Autístico/diagnóstico , Imagem de Tensor de Difusão/métodos , Irmãos , Substância Branca/patologia , Adolescente , Anisotropia , Transtorno Autístico/genética , Criança , Feminino , Humanos , Masculino , Estudos Retrospectivos
19.
J Biomed Inform ; 60: 286-93, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925516

RESUMO

OBJECTIVE: This study assesses data management needs in clinical research from the perspectives of researchers, software analysts and developers. MATERIALS AND METHODS: This is a mixed-methods study that employs sublanguage analysis in an innovative manner to link the assessments. We performed content analysis using sublanguage theory on transcribed interviews conducted with researchers at four universities. A business analyst independently extracted potential software features from the transcriptions, which were translated into the sublanguage. This common sublanguage was then used to create survey questions for researchers, analysts and developers about the desirability and difficulty of features. Results were synthesized using the common sublanguage to compare stakeholder perceptions with the original content analysis. RESULTS: Individual researchers exhibited significant diversity of perspectives that did not correlate by role or site. Researchers had mixed feelings about their technologies, and sought improvements in integration, interoperability and interaction as well as engaging with study participants. Researchers and analysts agreed that data integration has higher desirability and mobile technology has lower desirability but disagreed on the desirability of data validation rules. Developers agreed that data integration and validation are the most difficult to implement. DISCUSSION: Researchers perceive tasks related to study execution, analysis and quality control as highly strategic, in contrast with tactical tasks related to data manipulation. Researchers have only partial technologic support for analysis and quality control, and poor support for study execution. CONCLUSION: Software for data integration and validation appears critical to support clinical research, but may be expensive to implement. Features to support study workflow, collaboration and engagement have been underappreciated, but may prove to be easy successes. Software developers should consider the strategic goals of researchers with regard to the overall coordination of research projects and teams, workflow connecting data collection with analysis and processes for improving data quality.


Assuntos
Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Gestão do Conhecimento , Informática Médica/métodos , Algoritmos , Computadores , Humanos , Linguagens de Programação , Controle de Qualidade , Software , Interface Usuário-Computador
20.
Cereb Cortex ; 25(11): 4240-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24981794

RESUMO

Recent work suggests that biological motion perception is supported by interactions between posterior superior temporal sulcus (pSTS) and regions of the posterior lobe of the cerebellum. However, insufficient attention has been given to cerebellar contributions to most other social cognitive functions, including ones that rely upon the use of biological motion cues for making mental inferences. Here, using adapted Heider and Simmel stimuli in a passive-viewing paradigm, we present functional magnetic resonance imaging evidence detailing cerebellar contributions to animacy attribution processes in healthy adults. We found robust cerebellar activity associated with viewing animate versus random movement in hemispheric lobule VII bilaterally as well as in vermal and paravermal lobule IX. Stronger activity in left Crus I and lobule VI was associated with a greater tendency to describe the stimuli in social-affective versus motion-related terms. Psychophysiological interaction analysis indicated preferential effective connectivity between right pSTS and left Crus II during the viewing of animate than random stimuli, controlling for individual variance in social attributions. These findings indicate that lobules VI, VII, and IX participate in social functions even when no active response is required. This cerebellar activity may also partially explain individual differences in animacy attribution.


Assuntos
Mapeamento Encefálico , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Percepção de Movimento/fisiologia , Vias Neurais/fisiologia , Percepção Social , Adulto , Cerebelo/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/irrigação sanguínea , Oxigênio/sangue , Estimulação Luminosa , Psicofísica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA