Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Glia ; 71(11): 2541-2558, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392090

RESUMO

Although itch and pain have many similarities, they are completely different in perceptual experience and behavioral response. In recent years, we have a deep understanding of the neural pathways of itch sensation transmission. However, there are few reports on the role of non-neuronal cells in itch. Microglia are known to play a key role in chronic neuropathic pain and acute inflammatory pain. It is still unknown whether microglia are also involved in regulating the transmission of itch sensation. In the present study, we used several kinds of transgenic mice to specifically deplete CX3CR1+ microglia and peripheral macrophages together (whole depletion), or selectively deplete microglia alone (central depletion). We observed that the acute itch responses to histamine, compound 48/80 and chloroquine were all significantly reduced in mice with either whole or central depletion. Spinal c-fos mRNA assay and further studies revealed that histamine and compound 48/80, but not chloroquine elicited primary itch signal transmission from DRG to spinal Npr1- and somatostatin-positive neurons relied on microglial CX3CL1-CX3CR1 pathway. Our results suggested that microglia were involved in multiple types of acute chemical itch transmission, while the underlying mechanisms for histamine-dependent and non-dependent itch transmission were different that the former required the CX3CL1-CX3CR1 signal pathway.


Assuntos
Histamina , Microglia , Camundongos , Animais , Histamina/metabolismo , Microglia/metabolismo , Prurido/induzido quimicamente , Prurido/metabolismo , Camundongos Transgênicos , Cloroquina/farmacologia , Transdução de Sinais , Dor
2.
J Neurosci ; 39(47): 9453-9464, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31597724

RESUMO

Seizures are common in humans with various etiologies ranging from congenital aberrations to acute injuries that alter the normal balance of brain excitation and inhibition. A notable consequence of seizures is the induction of aberrant neurogenesis and increased immature neuronal projections. However, regulatory mechanisms governing these features during epilepsy development are not fully understood. Recent studies show that microglia, the brain's resident immune cell, contribute to normal neurogenesis and regulate seizure phenotypes. However, the role of microglia in aberrant neurogenic seizure contexts has not been adequately investigated. To address this question, we coupled the intracerebroventricular kainic acid model with current pharmacogenetic approaches to eliminate microglia in male mice. We show that microglia promote seizure-induced neurogenesis and subsequent seizure-induced immature neuronal projections above and below the pyramidal neurons between the DG and the CA3 regions. Furthermore, we identify microglial P2Y12 receptors (P2Y12R) as a participant in this neurogenic process. Together, our results implicate microglial P2Y12R signaling in epileptogenesis and provide further evidence for targeting microglia in general and microglial P2Y12R in specific to ameliorate proepileptogenic processes.SIGNIFICANCE STATEMENT Epileptogenesis is a process by which the brain develops epilepsy. Several processes have been identified that confer the brain with such epileptic characteristics, including aberrant neurogenesis and increased immature neuronal projections. Understanding the mechanisms that promote such changes is critical in developing therapies to adequately restrain epileptogenesis. We investigated the role of purinergic P2Y12 receptors selectively expressed by microglia, the resident brain immune cells. We report, for the first time, that microglia in general and microglial P2Y12 receptors in specific promote both aberrant neurogenesis and increased immature neuronal projections. These results indicate that microglia enhance epileptogenesis by promoting these processes and suggest that targeting this immune axis could be a novel therapeutic strategy in the clinic.


Assuntos
Microglia/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores Purinérgicos P2Y12/biossíntese , Convulsões/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/imunologia , Neurônios/imunologia , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/imunologia , Convulsões/genética , Convulsões/imunologia
3.
Glia ; 67(8): 1434-1448, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31179602

RESUMO

Microglial activation has been recognized as a major contributor to inflammation of the epileptic brain. Seizures are commonly accompanied by remarkable microgliosis and loss of neurons. In this study, we utilize the CX3CR1GFP/+ CCR2RFP/+ genetic mouse model, in which CX3CR1+ resident microglia and CCR2+ monocytes are labeled with GFP and RFP, respectively. Using a combination of time-lapse two-photon imaging and whole-cell patch clamp recording, we determined the distinct morphological, dynamic, and electrophysiological characteristics of infiltrated monocytes and resident microglia, and the evolution of their behavior at different time points following kainic acid-induced seizures. Seizure activated microglia presented enlarged somas with less ramified processes, whereas, infiltrated monocytes were smaller, highly motile cells that lacked processes. Moreover, resident microglia, but not infiltrated monocytes, proliferate locally in the hippocampus after seizure. Microglial proliferation was dependent on the colony-stimulating factor 1 receptor (CSF-1R) pathway. Pharmacological inhibition of CSF-1R reduced seizure-induced microglial proliferation, which correlated with attenuation of neuronal death without altering acute seizure behaviors. Taken together, we demonstrated that proliferation of activated resident microglia contributes to neuronal death in the hippocampus via CSF-1R after status epilepticus, providing potential therapeutic targets for neuroprotection in epilepsy.


Assuntos
Proliferação de Células , Gliose/fisiopatologia , Microglia/fisiologia , Monócitos/fisiologia , Estado Epiléptico/fisiopatologia , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular , Modelos Animais de Doenças , Gliose/etiologia , Hipocampo/fisiopatologia , Ácido Caínico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Neurônios/fisiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Estado Epiléptico/complicações , Técnicas de Cultura de Tecidos
4.
J Neurosci ; 37(33): 7878-7892, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28716963

RESUMO

Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2-CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2-CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1ß production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1ß production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2-CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1ß production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2-CCR2 signaling is required for monocyte infiltration, which in turn contributes to kainic acid (KA)-induced neuronal cell death. The downstream of CCR2 activation involves STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1ß production. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. The current study provides a novel insight on the function and mechanisms of CCL2-CCR2 signaling in KA-induced neurodegeneration and behavioral deficits.


Assuntos
Quimiocina CCL2/metabolismo , Interleucina-1beta/biossíntese , Neurônios/metabolismo , Receptores CCR2/metabolismo , Fator de Transcrição STAT3/metabolismo , Estado Epiléptico/metabolismo , Animais , Morte Celular/fisiologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Receptores CCR2/deficiência , Estado Epiléptico/patologia , Estado Epiléptico/prevenção & controle
5.
J Neurosci ; 37(4): 871-881, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123022

RESUMO

Clinical studies show that chronic pain is accompanied by memory deficits and reduction in hippocampal volume. Experimental studies show that spared nerve injury (SNI) of the sciatic nerve induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn, but impairs LTP in the hippocampus. The opposite changes may contribute to neuropathic pain and memory deficits, respectively. However, the cellular and molecular mechanisms underlying the functional synaptic changes are unclear. Here, we show that the dendrite lengths and spine densities are reduced significantly in hippocampal CA1 pyramidal neurons, but increased in spinal neurokinin-1-positive neurons in mice after SNI, indicating that the excitatory synaptic connectivity is reduced in hippocampus but enhanced in spinal dorsal horn in this neuropathic pain model. Mechanistically, tumor necrosis factor-alpha (TNF-α) is upregulated in bilateral hippocampus and in ipsilateral spinal dorsal horn, whereas brain-derived neurotrophic factor (BDNF) is decreased in the hippocampus but increased in the ipsilateral spinal dorsal horn after SNI. Importantly, the SNI-induced opposite changes in synaptic connectivity and BDNF expression are prevented by genetic deletion of TNF receptor 1 in vivo and are mimicked by TNF-α in cultured slices. Furthermore, SNI activated microglia in both spinal dorsal horn and hippocampus; pharmacological inhibition or genetic ablation of microglia prevented the region-dependent synaptic changes, neuropathic pain, and memory deficits induced by SNI. The data suggest that neuropathic pain involves different structural synaptic alterations in spinal and hippocampal neurons that are mediated by overproduction of TNF-α and microglial activation and may underlie chronic pain and memory deficits. SIGNIFICANCE STATEMENT: Chronic pain is often accompanied by memory deficits. Previous studies have shown that peripheral nerve injury produces both neuropathic pain and memory deficits and induces long-term potentiation (LTP) at C-fiber synapses in spinal dorsal horn (SDH) but inhibits LTP in hippocampus. The opposite changes in synaptic plasticity may contribute to chronic pain and memory deficits, respectively. However, the structural and molecular bases of these alterations of synaptic plasticity are unclear. Here, we show that the complexity of excitatory synaptic connectivity and brain-derived neurotrophic factor (BDNF) expression are enhanced in SDH but reduced in the hippocampus in neuropathic pain and the opposite changes depend on tumor necrosis factor-alpha/tumor necrosis factor receptor 1 signaling and microglial activation. The region-dependent synaptic alterations may underlie chronic neuropathic pain and memory deficits induced by peripheral nerve injury.


Assuntos
Hipocampo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Neuralgia/metabolismo , Neuralgia/patologia , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Traumatismos dos Nervos Periféricos/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Fator de Necrose Tumoral alfa/farmacologia
6.
Brain Behav Immun ; 55: 82-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26576724

RESUMO

Microglial cells are critical in the pathogenesis of neuropathic pain and several microglial receptors have been proposed to mediate this process. Of these receptors, the P2Y12 receptor is a unique purinergic receptor that is exclusively expressed by microglia in the central nervous system (CNS). In this study, we set forth to investigate the role of P2Y12 receptors in microglial electrophysiological and morphological (static and dynamic) activation during spinal nerve transection (SNT)-induced neuropathic pain in mice. First, we found that a genetic deficiency of the P2Y12 receptor (P2Y12(-/-) mice) ameliorated pain hypersensitivities during the initiation phase of neuropathic pain. Next, we characterised both the electrophysiological and morphological properties of microglia in the superficial spinal cord dorsal horn following SNT injury. We show dramatic alterations including a peak at 3days post injury in microglial electrophysiology while high resolution two-photon imaging revealed significant changes of both static and dynamic microglial morphological properties by 7days post injury. Finally, in P2Y12(-/-) mice, these electrophysiological and morphological changes were ameliorated suggesting roles for P2Y12 receptors in SNT-induced microglial activation. Our results therefore indicate that P2Y12 receptors regulate microglial electrophysiological as well as static and dynamic microglial properties after peripheral nerve injury, suggesting that the microglial P2Y12 receptor could be a potential therapeutic target for the treatment of neuropathic pain.


Assuntos
Microglia , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Microglia/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica , Receptores Purinérgicos P2Y12/deficiência
7.
J Neurosci ; 34(32): 10528-40, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100587

RESUMO

Microglia are highly dynamic immune cells of the CNS and their dynamism is proposed to be regulated by neuronal activities. However, the mechanisms underlying neuronal regulation of microglial dynamism have not been determined. Here, we found an increased number of microglial primary processes in the hippocampus during KA-induced seizure activity. Consistently, global glutamate induced robust microglial process extension toward neurons in both brain slices and in the intact brain in vivo. The mechanism of the glutamate-induced microglial process extension involves the activation of neuronal NMDA receptors, calcium influx, subsequent ATP release, and microglial response through P2Y12 receptors. Seizure-induced increases in microglial process numbers were also dependent on NMDA receptor activation. Finally, we found that P2Y12 KO mice exhibited reduced seizure-induced increases in microglial process numbers and worsened KA-induced seizure behaviors. Our results elucidate the molecular mechanisms underlying microglia-neuron communication that may be potentially neuroprotective in the epileptic brain.


Assuntos
Hipocampo/patologia , Microglia/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Estado Epiléptico/patologia , Animais , Receptor 1 de Quimiocina CX3C , Extensões da Superfície Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microglia/citologia , Neurônios/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Receptores de Quimiocinas/genética , Receptores Purinérgicos P2Y12/deficiência , Bloqueadores dos Canais de Sódio/farmacologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética
8.
Mol Cell Biochem ; 394(1-2): 31-41, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24825178

RESUMO

Ovulation in birds is triggered by a surge of luteinizing hormone (LH), and the ovulatory cycle is affected by the circadian rhythms of clock genes transcription levels in follicles. The influence of LH signaling cascades action on circadian clock genes was investigated using granulosa cells of preovulatory follicles from Roman hens cultured in a serum-free system. The expression of core oscillators (Bmal1, Clock, Cry1, Per2, and Rev-erbß), clock-controlled gene (Star), Egr-1 and LHr was measured by quantitative real-time PCR. Significant changes in clock genes transcription levels were observed in control groups over 24 h, indicating that cell-autonomous rhythms exist in granulosa cells. Intriguingly, the transcript levels of clock genes increased with LH treatment during 24 h of culture; they peaked 4 h in advance of controls and second but weaker oscillations were also observed. It appeared that LH changed the cell-autonomous rhythm and cycle time of clock genes. To further investigate the LH signaling cascades, inhibitors of cyclic adenosine monophosphate (cAMP), p38 mitogen-activated protein kinases (p38MAPK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways were used. The transcript levels of clock genes were suppressed by blocking cAMP, but increased with similar expression patterns by blocking the p38MPAK and ERK1/2 pathways over 24 h. Thus, the influence of LH signaling cascades in chicken ovulation is mediated by the cAMP pathway and also involves the p38MAPK and ERK1/2 pathways.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ciclo Estral , Células da Granulosa/efeitos dos fármacos , Hormônio Luteinizante/farmacologia , Ovulação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Galinhas , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Mol Neurobiol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062346

RESUMO

Cannabis is an annual herb of the genus Cannabis, with a history of medical use going back thousands of years. However, its abuse causes many side-effects, including confusion of consciousness, alienation, and mental disorders such as schizophrenia and depression. Research conducted on rodents suggests that there are two types of cannabinoid receptors-cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). CB1R is found mostly in the central nervous system, particularly in the prefrontal cortex (PFC), and alterations in its expression in the PFC have been strongly linked to mental disorders. Within the layers of the PFC, Brodmann area 46 is associated with the processing of complex cognitive information. However, it remains unclear whether CB1R is expressed in the PFC 46 area of non-human primate. In this work, we applied western blotting along with immunofluorescent histochemical staining to investigate the distribution pattern of CB1R in the PFC of nonhuman primate, Our findings reveal that CB1R is highly expressed in the monkey PFC, especially in area 46. Furthermore, CB1R exhibits a layered distribution pattern within area 46 of the PFC, with the inner granular layer displaying the highest expression levels. Additionally, CB1R+PV+ cells are widely distributed in lay II-VI of area 46, with layer IV showing notable prevalence. In conclusion, CB1R is distributed in the PV interneurons in area 46 of the prefrontal cortex, particularly in layer IV, suggesting that cannabis may modulate PFC activities via regulating interneuron in the PFC. And cannabis-induced side effects may be caused by abnormal expression of CB1R.

10.
Neurosci Bull ; 39(8): 1229-1245, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36637789

RESUMO

Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aß-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aß pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.


Assuntos
Hiperalgesia , Microglia , Camundongos , Animais , Hiperalgesia/metabolismo , Microglia/metabolismo , Modelos Animais de Doenças , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Gânglios Espinais/metabolismo
11.
Curr Biol ; 33(11): 2187-2200.e6, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167975

RESUMO

General anesthesia (GA) is an unconscious state produced by anesthetic drugs, which act on neurons to cause overall suppression of neuronal activity in the brain. Recent studies have revealed that GA also substantially enhances the dynamics of microglia, the primary brain immune cells, with increased process motility and territory surveillance. However, whether microglia are actively involved in GA modulation remains unknown. Here, we report a previously unrecognized role for microglia engaging in multiple GA processes. We found that microglial ablation reduced the sensitivity of mice to anesthetics and substantially shortened duration of loss of righting reflex (LORR) or unconsciousness induced by multiple anesthetics, thereby promoting earlier emergence from GA. Microglial repopulation restored the regular anesthetic recovery, and chemogenetic activation of microglia prolonged the duration of LORR. In addition, anesthesia-accompanying analgesia and hypothermia were also attenuated after microglial depletion. Single-cell RNA sequencing analyses showed that anesthesia prominently affected the transcriptional levels of chemotaxis and migration-related genes in microglia. By pharmacologically targeting different microglial motility pathways, we found that blocking P2Y12 receptor (P2Y12R) reduced the duration of LORR of mice. Moreover, genetic ablation of P2Y12R in microglia also promoted quicker recovery in mice from anesthesia, verifying the importance of microglial P2Y12R in anesthetic regulation. Our work presents the first evidence that microglia actively participate in multiple processes of GA through P2Y12R-mediated signaling and expands the non-immune roles of microglia in the brain.


Assuntos
Anestésicos , Microglia , Camundongos , Animais , Microglia/metabolismo , Anestésicos/metabolismo , Encéfalo , Anestesia Geral , Transdução de Sinais/fisiologia
12.
Mol Brain ; 15(1): 86, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289499

RESUMO

Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.


Assuntos
Microglia , Neuralgia , Camundongos , Animais , Antagonistas do Receptor Purinérgico P2Y , Neurônios/fisiologia , Formaldeído
13.
Nat Commun ; 13(1): 6233, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280666

RESUMO

Microglia are important immune cells in the central nervous system (CNS) that undergo turnover throughout the lifespan. If microglial debris is not removed in a timely manner, accumulated debris may influence CNS function. Clearance of microglial debris is crucial for CNS homeostasis. However, underlying mechanisms remain obscure. We here investigate how dead microglia are removed. We find that although microglia can phagocytose microglial debris in vitro, the territory-dependent competition hinders the microglia-to-microglial debris engulfment in vivo. In contrast, microglial debris is mainly phagocytosed by astrocytes in the brain, facilitated by C4b opsonization. The engulfed microglial fragments are then degraded in astrocytes via RUBICON-dependent LC3-associated phagocytosis (LAP), a form of noncanonical autophagy. Interference with C4b-mediated engulfment and subsequent LAP disrupt the removal and degradation of microglial debris, respectively. Together, we elucidate the cellular and molecular mechanisms of microglial debris removal in mice, extending the knowledge on the maintenance of CNS homeostasis.


Assuntos
Astrócitos , Microglia , Animais , Camundongos , Microglia/metabolismo , Fagocitose/fisiologia , Autofagia , Sistema Nervoso Central , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
14.
J Neurochem ; 119(2): 342-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21854394

RESUMO

Action potential (AP) patterns and dopamine (DA) release are known to correlate with rewarding behaviors, but how codes of AP bursts translate into DA release in vivo remains elusive. Here, a given AP pattern was defined by four codes, termed total AP number, frequency, number of AP bursts, and interburst time [N, f, b, i].. The 'burst effect' was calculated by the ratio (γ) of DA overflow by multiple bursts to that of a single burst when total AP number was fixed. By stimulating the medial forebrain bundle using AP codes at either physiological (20 Hz) or supraphysiological (80 Hz) frequencies, we found that DA was released from two kinetically distinct vesicle pools, the fast-releasable pool (FRP) and prolonged-releasable pool (PRP), in striatal dopaminergic terminals in vivo. We examined the effects of vesicle pools on AP-pattern dependent DA overflow and found, with given 'burst codes' [b=8, i=0.5 s], a large total AP number [N = 768, f = 80 Hz] produced a facilitating burst-effect (γ[b8/b1] = 126 ± 3%), while a small total AP number [N=96, 80 Hz] triggered a depressing-burst-effect (γ[b8/b1] = 29 ± 4%). Furthermore, we found that the PRP (but not the FRP) predominantly contributed to the facilitating-burst-effect and the FRP played an important role in the depressing-burst effect. Thus, our results suggest that striatal DA release captures pre-synaptic AP pattern information through different releasable pools.


Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Vesículas Sinápticas/fisiologia , Algoritmos , Animais , Simulação por Computador , Estimulação Elétrica , Eletroquímica , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Cinética , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Vesículas Sinápticas/metabolismo
15.
Mol Brain ; 14(1): 99, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183051

RESUMO

Activation of spinal cord microglia contributes to the development of peripheral nerve injury-induced neuropathic pain. However, the molecular mechanisms underlying microglial function in neuropathic pain are not fully understood. We identified that the voltage-gated proton channel Hv1, which is functionally expressed in spinal microglia, was significantly increased after spinal nerve transection (SNT). Hv1 mediated voltage-gated proton currents in spinal microglia and mice lacking Hv1 (Hv1 KO) display attenuated pain hypersensitivities after SNT compared with wildtype (WT) mice. In addition, microglial production of reactive oxygen species (ROS) and subsequent astrocyte activation in the spinal cord was reduced in Hv1 KO mice after SNT. Cytokine screening and immunostaining further revealed that IFN-γ expression was compromised in spinal astrocytes in Hv1 KO mice. These results demonstrate that Hv1 proton channel contributes to microglial ROS production, astrocyte activation, IFN-γ upregulation, and subsequent pain hypersensitivities after SNT. This study suggests Hv1-dependent microglia-astrocyte communication in pain hypersensitivities and identifies Hv1 as a novel therapeutic target for alleviating neuropathic pain.


Assuntos
Astrócitos/patologia , Comunicação Celular , Canais Iônicos/metabolismo , Microglia/patologia , Neuralgia/etiologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/complicações , Animais , Astrócitos/metabolismo , Proliferação de Células , Ativação Enzimática , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/patologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Mol Brain ; 12(1): 71, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426845

RESUMO

The P2Y12 receptor (P2Y12R) is a purinoceptor that is selectively expressed in microglia in the central nervous system. As a signature receptor, microglial P2Y12R mediates process chemotaxis towards ADP/ATP gradients and is engaged in several neurological diseases including chronic pain, stroke and seizures. However, the role of microglial P2Y12R in regulating neuronal excitability and innate behaviors is not fully understood. Here, we generated P2Y12-floxed mice to delete microglial P2Y12R beginning in development (CX3CR1Cre/+:P2Y12f/f; "constitutive knockout"), or after normal development in adult mice (CX3CR1CreER/+:P2Y12f/f; "induced knockout"). Using a battery of behavioral tests, we found that both constitutive and induced P2Y12R knockout mice exhibited innate fear but not learned fear behaviors. After mice were exposed to the elevated plus maze, the c-fos expression in ventral hippocampus CA1 neurons was robustly increased in P2Y12R knockout mice compared with wild-type mice. Consistently, using whole cell patch clamp recording, we found the excitability of ventral hippocampus CA1 neurons was increased in the P2Y12R knockout mice. The results suggest that microglial P2Y12R regulates neuronal excitability and innate fear behaviors in developing and adult mice.


Assuntos
Região CA1 Hipocampal/metabolismo , Medo/fisiologia , Microglia/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Animais , Deleção de Genes , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-fos/metabolismo
17.
Cell Rep ; 27(13): 3844-3859.e6, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242418

RESUMO

Spinal long-term potentiation (LTP) at C-fiber synapses is hypothesized to underlie chronic pain. However, a causal link between spinal LTP and chronic pain is still lacking. Here, we report that high-frequency stimulation (HFS; 100 Hz, 10 V) of the mouse sciatic nerve reliably induces spinal LTP without causing nerve injury. LTP-inducible stimulation triggers chronic pain lasting for more than 35 days and increases the number of calcitonin gene-related peptide (CGRP) terminals in the spinal dorsal horn. The behavioral and morphological changes can be prevented by blocking NMDA receptors, ablating spinal microglia, or conditionally deleting microglial brain-derived neurotrophic factor (BDNF). HFS-induced spinal LTP, microglial activation, and upregulation of BDNF are inhibited by antibodies against colony-stimulating factor 1 (CSF-1). Together, our results show that microglial CSF1 and BDNF signaling are indispensable for spinal LTP and chronic pain. The microglia-dependent transition of synaptic potentiation to structural alterations in pain pathways may underlie pain chronicity.


Assuntos
Dor Crônica/metabolismo , Potenciação de Longa Duração , Microglia/metabolismo , Plasticidade Neuronal , Corno Dorsal da Medula Espinal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Dor Crônica/genética , Dor Crônica/patologia , Camundongos , Camundongos Transgênicos , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Corno Dorsal da Medula Espinal/patologia
18.
Front Plant Sci ; 9: 468, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686693

RESUMO

The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique.

20.
Mol Brain ; 11(1): 34, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925434

RESUMO

Microglia have been shown to be of critical importance to the progression of temporal lobe epilepsy. However, the broad transcriptional changes that these cells undergo following seizure induction is not well understood. As such, we utilized RNAseq analysis upon microglia isolated from the hippocampus to determine expression pattern alterations following kainic acid induced seizure. We determined that microglia undergo dramatic changes to their expression patterns, particularly with regard to mitochondrial activity and metabolism. We also observed that microglia initiate immunological activity, specifically increasing interferon beta responsiveness. Our results provide novel insights into microglia transcriptional regulation following acute seizures and suggest potential therapeutic targets specifically in microglia for the treatment of seizures and epilepsy.


Assuntos
Hipocampo/patologia , Microglia/metabolismo , Microglia/patologia , Convulsões/induzido quimicamente , Análise de Sequência de RNA/métodos , Animais , Perfilação da Expressão Gênica , Ontologia Genética , Imunidade , Interferon beta/metabolismo , Ácido Caínico , Camundongos , Transdução de Sinais/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA