Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
BMC Genomics ; 25(1): 394, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649832

RESUMO

BACKGROUND: Untargeted metabolomics and proteomics were employed to investigate the intracellular response of yak rumen epithelial cells (YRECs) to conditions mimicking subacute rumen acidosis (SARA) etiology, including exposure to short-chain fatty acids (SCFA), low pH5.5 (Acid), and lipopolysaccharide (LPS) exposure for 24 h. RESULTS: These treatments significantly altered the cellular morphology of YRECs. Metabolomic analysis identified significant perturbations with SCFA, Acid and LPS treatment affecting 259, 245 and 196 metabolites (VIP > 1, P < 0.05, and fold change (FC) ≥ 1.5 or FC ≤ 0.667). Proteomic analysis revealed that treatment with SCFA, Acid, and LPS resulted in differential expression of 1251, 1396, and 242 proteins, respectively (FC ≥ 1.2 or ≤ 0.83, P < 0.05, FDR < 1%). Treatment with SCFA induced elevated levels of metabolites involved in purine metabolism, glutathione metabolism, and arginine biosynthesis, and dysregulated proteins associated with actin cytoskeleton organization and ribosome pathways. Furthermore, SCFA reduced the number, morphology, and functionality of mitochondria, leading to oxidative damage and inhibition of cell survival. Gene expression analysis revealed a decrease the genes expression of the cytoskeleton and cell cycle, while the genes expression associated with inflammation and autophagy increased (P < 0.05). Acid exposure altered metabolites related to purine metabolism, and affected proteins associated with complement and coagulation cascades and RNA degradation. Acid also leads to mitochondrial dysfunction, alterations in mitochondrial integrity, and reduced ATP generation. It also causes actin filaments to change from filamentous to punctate, affecting cellular cytoskeletal function, and increases inflammation-related molecules, indicating the promotion of inflammatory responses and cellular damage (P < 0.05). LPS treatment induced differential expression of proteins involved in the TNF signaling pathway and cytokine-cytokine receptor interaction, accompanied by alterations in metabolites associated with arachidonic acid metabolism and MAPK signaling (P < 0.05). The inflammatory response and activation of signaling pathways induced by LPS treatment were also confirmed through protein interaction network analysis. The integrated analysis reveals co-enrichment of proteins and metabolites in cellular signaling and metabolic pathways. CONCLUSIONS: In summary, this study contributes to a comprehensive understanding of the detrimental effects of SARA-associated factors on YRECs, elucidating their molecular mechanisms and providing potential therapeutic targets for mitigating SARA.


Assuntos
Acidose , Proliferação de Células , Células Epiteliais , Metabolômica , Proteômica , Rúmen , Animais , Rúmen/metabolismo , Rúmen/efeitos dos fármacos , Acidose/veterinária , Acidose/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Lipopolissacarídeos , Doenças dos Bovinos/metabolismo , Proteoma/metabolismo
2.
Anim Biotechnol ; 34(7): 2940-2950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165712

RESUMO

The current study was conducted to investigate the feasibility of high concentration diet (HCD) supplementation with Dimethyl Silicone Oil (DSO) to prevent frothy rumen bloat in goats. The treatments were control group (group C, feeding HCD) and test group (group T, feeding HCD supplemented with 0.1%DSO). The results showed that compared with the group C, the ruminal pH value, Microbial Crude Protein content of group T was extremely significantly higher (p < 0.01), the levels of acetic acid and propionic acid were significantly (p < 0.05) and extremely significantly (p < 0.01) lower in group T, respectively. The foam production and foam strength of the rumen fluid in the group T was extremely significantly lower (p < 0.01), the viscosity was extremely significantly (p < 0.01) higher than those of group C. The total gastrointestinal apparent digestibility of various nutrients, the rumen microbial relative abundance at the phylum level and genus level were not significantly different (p > 0.05). The results indicated that the supplementation of 0.1% DSO in HCD can significantly eliminate foam of the rumen fluid, and didn't disturb the ruminal microorganisms, no negatively affect on digestibility of nutrients in goats, thereby has the application prospect of preventing frothy rumen bloat.


The gas produced by rumen fermentation is wrapped in foam and cannot be discharged is the root cause of frothy bloat induced by a high concentration diet. In the present study, the feasibility of dietary supplementation with Dimethyl Silicone Oil (DSO) to prevent frothy bloat was preliminarily evaluated. The results indicated that DSO can significantly eliminate foam of the rumen fluid, and has not negatively effect on the ruminal microorganisms and the digestibility of nutrients in goats, thereby has the application prospect of preventing frothy bloat.


Assuntos
Rúmen , Óleos de Silicone , Animais , Óleos de Silicone/metabolismo , Rúmen/metabolismo , Cabras/metabolismo , Estudos de Viabilidade , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise
3.
Anim Biotechnol ; 34(6): 1900-1908, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35522131

RESUMO

This study evaluated the effects of high concentrate diets (HCD) on the rumen fermentation and the digestibility of nutrients in different sites of the gastrointestinal tract (GIT) in goats. Four goats were used in a crossover design. The goats were fitted with a ruminal cannula and flexible T-cannulae proximal duodenum and terminal ileum. Treatments were as follows: low concentrate group (LCG) and high concentrate group (HCG). Duodenal flow and forestomach digestibility of starch were significantly higher in the HCG than those in the LCG (p < 0.05); There was no significant difference in ileum flow and digestibility of starch in the small intestine, large intestine and total GIT (p > 0.05). The digestibility of crude protein (CP) in the forestomach was significantly higher in the HCG than in the LCG (p < 0.05); the flow of the duodenum and ileum of CP, and the CP digestibility of the small intestine, large intestine and total GIT were not significantly different between groups (p > 0.05). The duodenal and ileal flow of neutral detergent fiber (NDF), the NDF digestibility of the different segments and total GIT were not significantly different between groups (p > 0.05). Compared to the LCG, the ruminal pH of the HCG was significantly lower (p < 0.05). The HCG concentrations of microbial crude protein, ammonia nitrogen and isovaleric acid were significantly higher (p < 0.05) than the LCG. The foam strength, foam production and viscosity of the rumen fluid in the HCG were higher than the LCG (p < 0.01). These results showed that when the goats were fed with HCD, the digestibility of nutrients was not significantly impaired, but the risk of frothy rumen bloat increased. ImplicationsDue to a serious shortage of high-quality roughage in China, producers commonly used a high-concentrate diet in ruminants, which can improve animal production performance.Gastrointestinal digestive function plays a vital role in the absorption of nutrients and the healthy growth of animals.Therefore, this research evaluated the digestibility of various nutrients in different segments of the gastrointestinal tract (GIT) under HCD feeding by using three-site cannula goats as experimental animals.The results indicated that the GIT of goats could fully digest nutrients such as starch and protein under HCD feeding conditions.


Assuntos
Cabras , Rúmen , Animais , Ração Animal/análise , Dieta/veterinária , Fermentação , Trato Gastrointestinal/metabolismo , Cabras/metabolismo , Nutrientes , Rúmen/metabolismo , Amido/metabolismo , Estudos Cross-Over
4.
Anim Biotechnol ; 34(1): 77-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34138682

RESUMO

This study was conducted to examine the influence of uni and bilateral castration on growth performance and lipid metabolism in yellow cattle. Eighteen 9-month-old healthy yellow cattle (average body weight 184.03 ± 4.09 kg) were selected and divided into three groups: The uncastrated cattle (C), half castrated cattle (HC) and full castrated cattle (FC). The results showed that the growth rate of FC group was significantly reduced as compared to HC and C group, while the feed to gain ratio exhibited an opposite trend. The concentrations of triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein (HDL) were increased significantly in FC group from day 60 to the end of the trial compared to HC and control groups. Serum testosterone concentration of FC group cattle was decreased from day 60 to 120 d of the trial compared to HC and control groups. The concentration of the lauric acid in FC cattle was significantly increased from the HC and control groups. In the FC group, the acetyl-CoA carboxylase alpha (ACACA), ACC and fatty acid synthase (FAS) gene expression levels were significantly higher compared to control and HC groups. Our results of this study suggest that bilateral castration increased the lipid metabolism and fatty acid composition compared to unilateral castrated and un-castrated cattle.HighlightsBilateral castration alters the growth performance in yellow cattle.Bilateral castration alters hormones levels and lipid metabolites levels in serum.Bilateral castration improves the lipid metabolism and fatty acid profile.


Assuntos
Ácidos Graxos , Metabolismo dos Lipídeos , Bovinos , Animais , Metabolismo dos Lipídeos/genética , Castração , Triglicerídeos , Peso Corporal
5.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 113-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35352398

RESUMO

Different feed processing techniques affect barley digestibility and nutrient utilization in ruminants. To our knowledge, there are few studies on the interactive relationship between carbohydrate molecular structure profiles of cool-season-adapted barley grain and nutritional characteristics for ruminants. The objectives of this study were: (1) to investigate the effect of different technological processing methods on carbohydrate chemical profiles, Cornell Net Carbohydrate and Protein System-carbohydrate subfractions, ruminal and intestinal carbohydrate digestion of barley grain in dairy cows; (2) to study the effect of heat processing on carbohydrate molecular structure of barley grain using advanced molecular spectroscopy; and (3) to associate processing-induced changes in carbohydrate molecular structure with changes in carbohydrate metabolic profiles in dairy cows. Barley grain samples collected from Crop Research Field in Western Canada underwent four different processing treatments: control, dry heating (120°C for 60 min in an air-ventilated oven), moist heating (120°C for 60 min in an autoclave), and microwave irradiation (900 W and 2450 MHz for 5 min in a microwave). The heating conditions used in the current study induced some changes in rumen-degradable and -undegradable digestible fibre (CB3) fraction. Intestinally digestible CB3 was decreased after moist heating. Moist heating decreased starch digestibility compared to the other three treatments. The processing-induced carbohydrate molecular structure changes, which was revealed by advanced vibrational molecular spectroscopic technique (attenuated total reflectance-Fourier transform infrared), could be used to predict carbohydrate nutritional value.


Assuntos
Hordeum , Bovinos , Feminino , Animais , Hordeum/química , Micro-Ondas , Calefação , Ruminantes , Carboidratos/química , Rúmen/metabolismo , Ração Animal/análise , Digestão
6.
Anim Biotechnol ; 33(6): 1150-1160, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33530818

RESUMO

This study aimed to investigate the effects of active dry yeast (ADY) on growth performance, rumen microbial composition and carcass performance of beef cattle. Thirty-two finishing beef cattle (yak ♂ × cattle-yaks ♀), with an average body weight of 110 ± 12.85 kg, were randomly assigned to one of four treatments: the low plane of nutrition group (control), low plane of nutrition group + ADY 2 g/head daily (ADY2), low plane of nutrition group + ADY 4 g/head daily (ADY4) and the high plane of nutrition group (HPN). Supplementation of ADY increased average daily gain compared to the control group. The neutral detergent fiber and acid detergent fiber apparent digestibility in HPN group was greater than that in control group. The propionic acid concentration in the rumen in ADY2, ADY4, and HPN groups was greater than that in control group. The Simpson and Shannon indexes in control and HPN groups were higher than that in ADY4 group. At the phylum level, the relative abundance of Firmicutes in the HPN group was higher than that in ADY4 group. The relative abundance of Ruminococcaceae UCG-002 in ADY4 group was higher than that in control and HPN groups. In conclusion, supplementation ADY 4 g/head daily shift the rumen microbial composition of beef cattle fed low plane of nutrition to a more similar composition with cattle fed with HPN diet and produce the similar carcass weight with HPN diet.HighlightsThe ADY can improve the utilization of nitrogen and decrease the negative impact on the environment in beef cattle.Cattle fed low plane of nutrition diet supplemented with ADY 4 g/head daily increased growth performance.Supplementation ADY 4 g/head daily in low plane of nutrition diet might be produced comparable carcass weight to HPN diet.


Assuntos
Microbiota , Rúmen , Bovinos , Animais , Rúmen/metabolismo , Saccharomyces cerevisiae , Fermentação , Ração Animal/análise , Detergentes/metabolismo , Dieta/veterinária , Suplementos Nutricionais
7.
Crit Rev Food Sci Nutr ; 61(19): 3256-3266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32787447

RESUMO

This review aims to provide research update and progress on applications of advanced molecular spectroscopy to current research on canola related bio-processing technology, molecular structure, and nutrient utilization and availability. The studies focused on how inherent molecular structure changes affect nutritional quality of canola and its co-products from bio-processing. The molecular spectroscopic techniques (SR-IMS, DRIFT, ATR-FTIR) used for molecular structure and nutrition association were reviewed, including the synchrotron radiation with infrared microspectroscopy, the synchrotron radiation with soft x-ray microspectroscopy, the diffuse reflectance infrared Fourier transform spectroscopy, the grading near infrared reflectance spectroscopy, and the Fourier transform infrared vibrational spectroscopy. Nutritional evaluation with other techniques in association with molecular structure was also reviewed. This study provides updated research progress on application of molecular spectroscopy in combination with various nutrition evaluation techniques to current research in the canola-related bio-oil/bio-energy processing and nutrition sciences.


Assuntos
Ração Animal , Nutrientes , Ração Animal/análise , Estrutura Molecular , Valor Nutritivo , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Appl Microbiol Biotechnol ; 105(1): 313-325, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201274

RESUMO

Investigation of the compositional and functional characteristics of the gastrointestinal bacterial community in beef cattle breeds can improve our understanding of the influence of gastrointestinal tract (GIT) regions and host breeds on the bacterial community. In this study, 16S ribosomal RNA (16S rRNA) gene amplicon sequencing was used to characterize the bacterial communities in the rumen, duodenum, jejunum, ileum, caecum, and colon of Xuanhan yellow cattle (XHC) and Simmental crossbred cattle (SXC). The results showed that the diversity of the bacterial population was different in GIT regions of XHC and SXC (P < 0.05). In total, ten bacterial phyla, sixteen bacterial genera, and nine metabolic pathways were identified in the core bacteria. The phyla Firmicutes, Bacteroidetes, and Proteobacteria were predominant, but their proportions were different in GIT regions (P < 0.05). The diversity, structure, and composition of the bacteria in the rumen were similar between the breeds (P > 0.05), and the indices in the intestine showed significant differences (P < 0.05). Moreover, the composition and structure of the bacterial communities in the rumen, small intestine, and large intestine were different regardless of the breed. Thus, the bacterial communities were different among the gastrointestinal regions in each breed, and the bacterial community in the rumen had more stable characteristics than that in the intestine between two breeds. Further studies may focus on the minor microbial communities and the functions of GIT bacteria to better understand gut-microbe interactions. KEY POINTS: • Differences in bacteria among gastrointestinal regions differ in cattle breeds. • Differences between the breeds in the ruminal bacteria are less pronounced than differences in the intestinal bacteria.


Assuntos
Bactérias , Trato Gastrointestinal , Animais , Bactérias/genética , Bovinos , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rúmen
9.
J Sci Food Agric ; 101(9): 3927-3932, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33345324

RESUMO

BACKGROUND: The study compared the growth performance, carcass characteristics and meat quality of steers of Xuanhan yellow cattle, Simmental crossbreed cattle (Simmental × Xuanhan yellow cattle) and cattle-yak (Jersey × yak). All steers were feed with the same diet from 6 months until slaughter at 30 months. The longissimus dorsi muscle was used to compare the meat quality traits. RESULTS: By comparison, Simmental crossbreed cattle had higher growth performance (P < 0.05) and carcass characteristics (P < 0.05); cattle-yak had higher value of a*, b* of meat color (P < 0.05) and higher protein contents of meat (P < 0.05); Xuanhan yellow cattle had higher water holding capacity (P < 0.05) and lower shear force (P < 0.05). CONCLUSIONS: The results show that Simmental crossbred cattle had better meat performance and provided low-fat meat with a beneficial fatty acid composition, but with lower meat quality; cattle-yaks provided greater meat color and higher protein content; Xuanhan yellow cattle provided meat with preferable tenderness. © 2020 Society of Chemical Industry.


Assuntos
Bovinos/metabolismo , Carne/análise , Ração Animal/análise , Animais , Composição Corporal , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Feminino , Hibridização Genética , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo
10.
Asian-Australas J Anim Sci ; 32(1): 82-91, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30056683

RESUMO

OBJECTIVE: This experiment was conducted to compare the structure and composition of ruminal microorganisms in goats with high and low neutral detergent fibre (NDF) digestibility. METHODS: Nineteen crossbred goats were used as experimental animals and fed the same total mixed rations during the 30-day pre-treatment and 6-day digestion trialperiods. All faeces were collected during the digestion period for measuring the NDF digestibility. Then, high and the low NDF digestibility individuals were chosen for the high NDF digestibility group (HFD) and low NDF digestibility group (LFD), respectively. Rumen contents were collected for total microbial DNA extraction. The V4 region of the bacterial 16S rRNA gene was amplified using universal primers of bacteria and sequenced using high-throughput sequencer. The sequences were mainly analysed by QIIME 1.8.0. RESULTS: A total of 18,694 operational taxonomic units were obtained, within 81.98% belonged to bacteria, 6.64% belonged to archaea and 11.38% was unassigned microorganisms. Bacteroidetes, Firmicutes, and Proteobacteria were the predominant microbial phyla in both groups. At the genus level, the relative abundance of fifteen microorganisms were significantly higher (p<0.05) and six microorganisms were extremely significantly higher (p<0.01) in LFD than HFD. Overall, 176 core shared genera were identified in the two groups. The relative abundance of 2 phyla, 5 classes, 10 orders, 13 families and 15 genera had a negative correlation with NDF digestibility, but only the relative abundance of Pyramidobacter had a positive correlation with NDF digestibility. CONCLUSION: There were substantial differences in NDF digestibility among the individual goats, and the NDF digestibility had significant correlation with the relative abundance of some ruminal microorganisms.

11.
Anaerobe ; 44: 78-86, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188879

RESUMO

This study aimed to investigate the effects of dietary supplementation of different dosages of active dried yeast (ADY) on the fecal methanogenic archaea community of dairy cattle. Twelve multiparous, healthy, mid-lactating Holstein dairy cows (body weight: 584 ± 23.2 kg, milk produced: 26.3 ± 1.22 kg/d) were randomly assigned to one of three treatments (control, ADY2, and ADY4) according to body weight with four replicates per treatment. Cows in the control group were fed conventional rations without ADY supplementation, while cows in the ADY2 and ADY4 group were fed rations supplemented with ADY at 2 or 4 g/d/head. Real-time PCR analysis showed the populations of total methanogens in the feces were significantly decreased (P < 0.05) in the ADY4 group compared with control. High-throughput sequencing technology was applied to examine the differences in methanogenic archaea diversity in the feces of the three treatment groups. A total of 155,609 sequences were recovered (a mean of 12,967 sequences per sample) from the twelve fecal samples, which consisted of a number of operational taxonomic units (OTUs) ranging from 1451 to 1,733, were assigned to two phyla, four classes, five orders, five families and six genera. Bioinformatic analyses illustrated that the natural fecal archaeal community of the control group was predominated by Methanobrevibacter (86.9% of the total sequence reads) and Methanocorpusculum (10.4%), while the relative abundance of the remaining four genera were below 1% with Methanosphaera comprising 0.8%, Thermoplasma composing 0.4%, and the relative abundance of Candidatus Nitrososphaera and Halalkalicoccus being close to zero. At the genus level, the relative abundances of Methanocorpusculum and Thermoplasma were increased (P < 0.05) with increasing dosage of ADY. Conversely, the predominant methanogen genus Methanobrevibacter was decreased with ADY dosage (P < 0.05). Dietary supplementation of ADY had no significant effect (P > 0.05) on the abundances of genera unclassified, Candidatus Nitrososphaera, and Halalkalicoccus. In conclusion, supplementation of ADY to the rations of dairy cattle could alter the population sizes and composition of fecal methanogenic archaea in the feces of dairy cattle. The decrease in Methanobrevibacter happened with a commensurate increase in the genera Methanocorpusculum and Thermoplasma.


Assuntos
Archaea/isolamento & purificação , Biodiversidade , Dieta/métodos , Suplementos Nutricionais , Fezes/microbiologia , Metano/metabolismo , Fermento Seco/administração & dosagem , Animais , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bovinos , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real
12.
Asian-Australas J Anim Sci ; 29(6): 814-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26954167

RESUMO

This study was conducted to determine and compare the effects of yeast yeast culture (YC) and vitamin E (VE) supplementation on endotoxin absorption and antioxidant status in lactating dairy goats suffering from heat stress (HS). Three first lactation Saanen dairy goats (body weight 30±1.5 kg) were surgically fitted with indwelling catheters in the portal vein, mesenteric vein and carotid artery, and were randomly assigned to a 3×3 Latin square design. Dietary treatments were the basal diet, and the basal diet supplemented with either 100 IU VE or 30 g YC. Goats were kept in temperature and humidity-controlled room at 35°C from 8:00 to 20:00 and at 24°C from 20:00 till the next morning at 8:00. The relative humidity was kept at 55%. HS increased dairy goats' rectum temperature and respiration frequency (p<0.01). HS reduced plasma flux rate of milk goats (p<0.01), but the plasma flux rate increased when the animal was under the conditions of the thermo-neutral period (p<0.01). The VE supplementation lowered dairy goats' rectum temperature during thermo-neutral period (p<0.01). Meanwhile, no significant differences were observed between the control and YC treatment in rectum temperature and respiration frequency (p>0.05). Dietary supplementation of VE and YC reduced heat stressed dairy goats' endotoxin concentration of the carotid artery and portal vein (p<0.01). However, the endotoxin concentration of the YC treatment was higher than that of the VE treatment (p<0.01). Both VE and YC supplementation decreased heat stressed dairy goats' absorption of endotoxin in portal vein (p<0.01). The endotoxin absorption of YC treatment was higher than the VE treatment (p<0.01). The addition of VE and YC decreased dairy goats' superoxide dismutase (SOD) concentration during HS and the whole experiment period (p<0.01). The addition of VE lowered SOD concentration during thermo-neutral period (p<0.01). Likewise, the addition of VE and YC lowered dairy goats' malonaldehyde (MDA) concentration during HS and the whole experimental period, and the MDA concentration in the VE treatment was lower than the YC treatment (p<0.05). The addition of VE decreased MDA concentration during thermo-neutral period. On the contrast, the addition of VE increased dairy goats total antioxidant potential (TAP) concentration during HS, thermo-neutral and the whole experimental period (p<0.01). The addition of YC increased TAP concentration only during HS period (p<0.01). It is concluded that both VE and YC are useful in alleviating HS of dairy goats by weakening endotoxin absorption and promoting antioxidant capacity. Compared with YC, VE is much more powerful in easing dairy goats HS.

13.
Asian-Australas J Anim Sci ; 29(11): 1593-1600, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26954191

RESUMO

This research was conducted to investigate the physiological consequences of undernourished yak. Twelve Maiwa yak (110.3±5.85 kg) were randomly divided into two groups (baseline and starvation group). The yak of baseline group were slaughtered at day 0, while the other group of yak were kept in shed without feed but allowed free access to water, salt and free movement for 9 days. Blood samples of the starvation group were collected on day 0, 1, 2, 3, 5, 7, 9 and the starved yak were slaughtered after the final blood sample collection. The liver and muscle glycogen of the starvation group decreased (p<0.01), and the lipid content also decreased while the content of moisture and ash increased (p<0.05) both in Longissimus dorsi and liver compared with the baseline group. The plasma insulin and glucose of the starved yak decreased at first and then kept stable but at a relatively lower level during the following days (p<0.01). On the contrary, the non-esterified fatty acids was increased (p<0.01). Beyond our expectation, the ketone bodies of ß-hydroxybutyric acid and acetoacetic acid decreased with prolonged starvation (p<0.01). Furthermore, the mRNA expression of lipogenetic enzyme fatty acid synthase and lipoprotein lipase in subcutaneous adipose tissue of starved yak were down-regulated (p<0.01), whereas the mRNA expression of lipolytic enzyme carnitine palmitoyltransferase-1 and hormone sensitive lipase were up-regulated (p<0.01) after 9 days of starvation. The phosphoenolpyruvate carboxykinase and pyruvate carboxylase, responsible for hepatic gluconeogenesis were up-regulated (p<0.01). It was concluded that yak derive energy by gluconeogenesis promotion and fat storage mobilization during starvation but without ketone body accumulation in the plasma.

14.
Br J Nutr ; 111(12): 2123-34, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24606984

RESUMO

The present study was conducted to test the hypothesis that low concentrations of coated ZnO, as a substitute for a high concentration of ZnO (2250 mg Zn/kg), could improve intestinal immunity function and regulate microbiota composition, thus alleviating the incidence of diarrhoea in weaned piglets. A total of eighty-four cross-bred piglets, weaned at an age of 28 (SEM 1) d, were allocated randomly, on the basis of average initial body weight (7·72 (SEM 0·65) kg), to seven treatment groups as follows: a 250 mg Zn (ZnO)/kg group (low Zn; LZ) and a 2250 mg Zn (ZnO)/kg group (high Zn; HZ) that were offered diets containing ZnO at 250 and 2250 mg Zn/kg, respectively; and five experimental groups in which coated ZnO was added at 250, 380, 570, 760 and 1140 mg Zn/kg basal diet, respectively. The trial lasted 2 weeks. The results indicated that, compared with LZ treatment, supplementation with coated ZnO at 380 or 570 mg Zn/kg reduced (P< 0·05) diarrhoea index, increased (P< 0·05) duodenal villus height and the ratio of villus height:crypt depth, up-regulated (P< 0·05) the gene expression of insulin-like growth factor 1, zonula occludens protein-1, occludin, IL-10 and transforming growth factor ß1, and elevated (P< 0·05) secretory IgA concentration in the jejunal mucosa. Microbiota richness and the Shannon diversity index were also decreased (P< 0·05). Furthermore, piglets in the group fed coated ZnO at 380 or 570 mg Zn/kg did not differ from those in the HZ-fed group in relation to the aforementioned parameters. Collectively, a low concentration of coated ZnO (380 or 570 mg Zn/kg) can alleviate the incidence of diarrhoea by promoting intestinal development, protecting the intestinal mucosal barrier from damage, stimulating the mucosal immune system and regulating the microbiota composition.


Assuntos
Diarreia/veterinária , Imunidade nas Mucosas , Fatores Imunológicos/uso terapêutico , Mucosa Intestinal/imunologia , Doenças dos Suínos/prevenção & controle , Óxido de Zinco/uso terapêutico , Animais , Cruzamentos Genéticos , Diarreia/imunologia , Diarreia/microbiologia , Diarreia/prevenção & controle , Duodeno/crescimento & desenvolvimento , Duodeno/imunologia , Duodeno/microbiologia , Duodeno/ultraestrutura , Ingestão de Energia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Regulação da Expressão Gênica no Desenvolvimento , Imunoglobulina A Secretora/análise , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/química , Fatores Imunológicos/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/microbiologia , Mucosa Intestinal/ultraestrutura , Jejuno/crescimento & desenvolvimento , Jejuno/imunologia , Jejuno/microbiologia , Jejuno/ultraestrutura , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/imunologia , Lactobacillus/isolamento & purificação , Microvilosidades/imunologia , Microvilosidades/metabolismo , Microvilosidades/microbiologia , Microvilosidades/ultraestrutura , Sus scrofa , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia , Comprimidos com Revestimento Entérico , Desmame , Aumento de Peso , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química , Óxido de Zinco/metabolismo
15.
J Dairy Sci ; 97(1): 446-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24239075

RESUMO

The objectives of the present study were to investigate the nutritive value of camelina seeds (Camelina sativa L. Crantz) in ruminant nutrition and to use molecular spectroscopy as a novel technique to quantify the heat-induced changes in protein molecular structures in relation to protein digestive behavior in the rumen and intestine of dairy cattle. In this study, camelina seeds were used as a model for feed protein. The seeds were kept as raw (control) or heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120°C for 60 min. The parameters evaluated were (1) chemical profiles, (2) Cornell Net Protein and Carbohydrate System protein subfractions, (3) nutrient digestibilities and estimated energy values, (4) in situ rumen degradation and intestinal digestibility, and (5) protein molecular structures. Compared with raw seeds, moist heating markedly decreased (52.73 to 20.41%) the content of soluble protein and increased (2.00 to 9.01%) the content of neutral detergent insoluble protein in total crude protein (CP). Subsequently, the rapidly degradable Cornell Net Protein and Carbohydrate System CP fraction markedly decreased (45.06 to 16.69% CP), with a concomitant increase in the intermediately degradable (45.28 to 74.02% CP) and slowly degradable (1.13 to 8.02% CP) fractions, demonstrating a decrease in overall protein degradability in the rumen. The in situ rumen incubation study revealed that moist heating decreased (75.45 to 57.92%) rumen-degradable protein and increased (43.90 to 82.95%) intestinal digestibility of rumen-undegradable protein. The molecular spectroscopy study revealed that moist heating increased the amide I-to-amide II ratio and decreased α-helix and α-helix-to-ß-sheet ratio. In contrast, dry heating did not significantly change CP solubility, rumen degradability, intestinal digestibility, and protein molecular structures compared with the raw seeds. Our results indicated that, compared with dry heating, moist heating markedly changed protein chemical profiles, protein subfractions, rumen protein degradability, and intestinal digestibility, which were associated with changes in protein molecular structures (amide I-to-amid II ratio and α-helix-to-ß-sheet ratio). Moist heating improved the nutritive value and utilization of protein in camelina seeds compared with dry heating.


Assuntos
Ração Animal/análise , Brassicaceae/química , Valor Nutritivo , Proteínas de Plantas/química , Sementes/química , Animais , Bovinos , Digestão , Temperatura Alta , Mucosa Intestinal/metabolismo , Estrutura Molecular , Estrutura Secundária de Proteína , Rúmen/metabolismo , Ruminantes/metabolismo
16.
Front Vet Sci ; 11: 1362502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721150

RESUMO

The yak, a unique species of cattle found exclusively on the western plateau of China, is a valuable source of livelihood for local residents. However, their low fecundity restricts the expansion of yak farming, whereas regional factors limit studies on yak breeding. Granulosa cells (GCs), which provide essential steroid hormones and growth factors for oocytes, have been the focus of many studies on the mechanisms of follicular growth and atresia. This study aimed to establish an immortalized cell line model that could serve as a tool for future studies on the mechanisms of ovarian follicle development in yaks. First, we isolated primary yak granulosa cells (yGCs) and evaluated their replicative senescence after continuous in vitro subculturing. Subsequently, an immortalized culture method for primary yGC was explored, and a new cell line model was established to study the mechanism of follicular development in vitro. We used a mammalian gene expression lentivirus vector to transfer the simian virus 40 large T antigen (SV40T) into primary yGC to obtain an immortalized cell line. The immortalized yGCs were morphologically identical to the primary yGCs, and cell proliferation and growth were normal within a limited number of generations. Follicle-stimulating hormone receptor (FSHR), a specific marker for GCs, was positively expressed in immortalized yGCs. Furthermore, the immortalized yGCs retained the ability of GCs to synthesize estradiol and progesterone and expressed genes related to steroid synthesis. The establishment of immortalized yGC opens up a myriad of possibilities for advancing our understanding of yak reproductive biology and improving yak breeding strategies.

17.
Animals (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672391

RESUMO

Growth-retarded yaks are of a high proportion on the Tibetan plateau and reduce the economic income of farmers. Our previous studies discovered a maldevelopment in the ruminal epithelium of growth-retarded yaks, but the molecular mechanisms are still unclear. This study aimed to reveal how the proteomic profile in the ruminal epithelium contributed to the growth retardation of yaks. The proteome of the ruminal epithelium was detected using a high-resolution mass spectrometer. There were 52 proteins significantly differently expressed between the ruminal epithelium of growth-retarded yaks and growth-normal yaks, with 32 downregulated and 20 upregulated in growth-retarded yaks. Functional analysis showed the differently expressed proteins involved in the synthesis and degradation of ketone bodies (p = 0.012), propanoate metabolism (p = 0.018), pyruvate metabolism (p = 0.020), and mineral absorption (p = 0.024). The protein expressions of SLC26A3 and FTH1, enriched in the mineral absorption, were significantly downregulated in growth-retarded yaks. The key enzymes ACAT2 and HMGCS2 enriched in ketone bodies synthesis and key enzyme PCCA enriched in propanoate metabolism had lower protein expressions in the ruminal epithelium of growth-retarded yaks. The ATP concentration and relative mitochondrial DNA copy number in the ruminal epithelium of growth-normal yaks were dramatically higher than those of growth-retarded yaks (p < 0.05). The activities of citrate synthase (CS), the α-ketoglutarate dehydrogenase complex (α-KGDHC), isocitrate dehydrogenase (ICD) in the tricarboxylic acid cycle (TCA), and the mitochondrial respiratory chain complex (MRCC) were significantly decreased in ruminal epithelium of growth-retarded yaks compared to growth-normal yaks (p < 0.05). The mRNA expressions of COQ9, COX4, and LDHA, which are the encoding genes in MRCC I, IV and anaerobic respiration, were also significantly decreased in the ruminal epithelium of growth-retarded yaks (p < 0.05). Correlation analysis revealed that the average daily gain (ADG) was significantly positively correlated to the relative mitochondrial DNA copy number (p < 0.01, r = 0.772) and ATP concentration (p < 0.01, r = 0.728) in the ruminal epithelium, respectively. The ruminal weight was positively correlated to the relative mitochondrial DNA copy number (p < 0.05, r = 0.631) and ATP concentration in ruminal epithelium (p < 0.01, r = 0.957), respectively. The ruminal papillae had a significant positive correlation with ATP concentration in ruminal epithelium (p < 0.01, r = 0.770). These results suggested that growth-retarded yaks had a lower VFA metabolism, ketone bodies synthesis, ion absorption, and ATP synthesis in the ruminal epithelium; it also indicated that the growth retardation of yaks is related to the obstruction of cellular ATP synthesis in rumen epithelial cells.

18.
Front Vet Sci ; 10: 1212422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546339

RESUMO

To date, no research has been done on energy requirements for yaks in Tibetan cold weather. The findings of the current study provide proper energy requirements for yaks would facilitate scientific feeding of fattening yaks in cold weather. The metabolomics and 16s rRNA sequencing technologies were used to explore the underlying mechanism that affects the growth performance of yaks fed with different energy levels of diet in cold weather. Three groups of yaks (141.7 ± 3.34 kg) were fed with diets containing metabolizable energy 7.20, 7.89, and 8.58 MJ/kg DM (dry matter) and named the low-, medium-, and high-energy groups, respectively. The results showed that the average daily feed intake of the high-energy group was higher than that of the low-energy group (p = 0.006). Plasma aspartate aminotransferase (p = 0.004), alanine aminotransferase (p < 0.001), and interferon-γ (p < 0.001) in the high-energy group were lower than in the low-energy group. In contrast, superoxide dismutase (p < 0.001), immunoglobulin G (p < 0.001), and interleukin 2 (p = 0.002) were higher than the low-energy group. The rumen microbial protein (p = 0.025), total volatile fatty acids (p = 0.029), and neutral detergent fiber digestibility (p = 0.050) in the high-energy group were higher than in the low-energy group, whereas the acetate: propionate ratio (p = 0.001) and ammonium nitrogen (p = 0.001) were lower than in the low-energy group. The plasma metabolomics results displayed that yaks fed with a high-energy diet augmented the metabolism of arginine, proline, purine, taste transduction, pyrimidine, and glutathione pathways. The relative abundance of Methanobrevibacter in the high-energy group was lower (p < 0.001), whereas the relative abundance of Methanosphaera (p < 0.001) was higher than in the low-energy group. The results of the current study suggest that a high-energy diet in growing yaks during the cold season can improve growth performance, rumen microbial protein synthesis, antioxidants, and immunity.

19.
Front Vet Sci ; 10: 1142965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035805

RESUMO

Rumen bloat is the most common digestive disorder in fattening ruminants, which is responsible for around 2-3 % of deaths in the ruminants industry and is therefore considered to be a serious threat to ruminant farming. The root cause of rumen bloat caused by feeding high concentrate dies would be attributed to the production of a large amount of stable foam during the fattening period. The exact mechanism of rumen foam formation has yet to be investigated. Proteins, polysaccharides and carboxylates derived from feed, and synthesized by microbes during the rumen fermentation may act as foaming agents or stabilizers in the formation progress of rumen foam. Supplementation of condensed tannins and other additives can be an effective way to prevent feedlot bloat induced by feeding high concentrate diets.

20.
Animals (Basel) ; 13(3)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766256

RESUMO

This experiment was aimed to compare the effects of two diets with different protein content on the growth performance, immune indexes, rumen fermentation characteristics and plasma metabolomics of growing yak in the cold season. A total of 24, 2-year-old healthy yaks with similar body weight (142.9 ± 3.56 kg) were randomly allocated to two isoenergetic diets with different protein content (10 vs 14%) according to a non-paired experimental design, and the protein of the diets was increased by increasing soybean meal, rapeseed meal and cottonseed meal. The growth performance experiment lasted 56 days. Four days before the end of the growth experiment, the digestion trial was conducted, and the rumen fluid and plasma was collected for measurement. The results showed that the average daily feed intake (p < 0.001) and average daily gain (p = 0.006) of yak fed a high-protein diet was significantly greater, while the feed conversion ratio was lower (p = 0.021) than that of yaks fed a low-protein diet. Plasma aspartate aminotransferase (p = 0.002), alanine aminotransferase (p < 0.001), malondialdehyde (p = 0.001), tumor necrosis factor-α (p = 0.032) and interferon-γ (p = 0.017) of the high-protein group were significantly lesser, whereas superoxide dismutase (p = 0.004) and interleukin-2 (p = 0.007) was significantly greater than that of the low-protein group. The rumen microbial crude protein (p < 0.047) and crude protein digestibility (p = 0.015) of yak fed a high-protein diet was significantly greater than that of the low-protein group. The metabolomics results showed that yaks fed a high-protein diet were elevated in protein digestion and absorption, arginine and proline metabolism, tryptophan metabolism, purine metabolism, butanoate metabolism, taste transduction, pyrimidine metabolism, pantothenate and CoA biosynthesis, glutathione metabolism and renin secretion pathways. It is concluded that a high-protein diet in the cold season can promote rumen microbial crude protein synthesis, enhance antioxidant and immune function and promote growth performance of yaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA