Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Physiol Cell Physiol ; 326(5): C1353-C1366, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497110

RESUMO

The tissue inhibitor of metalloproteinases 2 (TIMP2) has emerged as a promising biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its exact role in SA-AKI and the underlying mechanism remains unclear. In this study, we investigated the impact of kidney tubule-specific Timp2 knockout mice on kidney injury and inflammation. Our findings demonstrated that Timp2-knockout mice exhibited more severe kidney injury than wild-type mice, along with elevated levels of pyroptosis markers NOD-like receptor protein 3 (NLRP3), Caspase1, and gasdermin D (GSDMD) in the early stage of SA-AKI. Conversely, the expression of exogenous TIMP2 in TIMP2-knockout mice still protected against kidney damage and inflammation. In in vitro experiments, using recombinant TIMP2 protein, TIMP2 knockdown demonstrated that exogenous TIMP2 inhibited pyroptosis of renal tubular cells stimulated by lipopolysaccharide (LPS). Mechanistically, TIMP2 promoted the ubiquitination and autophagy-dependent degradation of NLRP3 by increasing intracellular cyclic adenosine monophosphate (cAMP), which mediated NLRP3 degradation through recruiting the E3 ligase MARCH7, attenuating downstream pyroptosis, and thus alleviating primary tubular cell damage. These results revealed the renoprotective role of extracellular TIMP2 in SA-AKI by attenuating tubular pyroptosis, and suggested that exogenous administration of TIMP2 could be a promising therapeutic intervention for SA-AKI treatment.NEW & NOTEWORTHY Tissue inhibitor of metalloproteinase 2 (TIMP-2) has been found to be the best biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its role and the underlying mechanism in SA-AKI remain elusive. The authors demonstrated in this study using kidney tubule-specific knockout mice model of SA-AKI and primary renal tubule cells stimulated with lipopolysaccharide (LPS) that extracellular TIMP-2 promoted NOD-like receptor protein 3 (NLRP3) ubiquitination and autophagy-dependent degradation by increasing intracellular cyclic adenosine monophosphate (cAMP), thus attenuated pyroptosis and alleviated renal damage.


Assuntos
Injúria Renal Aguda , AMP Cíclico , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Sepse , Inibidor Tecidual de Metaloproteinase-2 , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Autofagia , AMP Cíclico/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Sepse/complicações , Sepse/metabolismo , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética
2.
Kidney Int ; 105(3): 508-523, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163633

RESUMO

Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.


Assuntos
Injúria Renal Aguda , Exossomos , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Exossomos/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/metabolismo , Sepse/complicações , Sepse/metabolismo
3.
Blood Purif ; 53(6): 465-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228111

RESUMO

INTRODUCTION: The objective of this study was to examine the utility of protein kinase N1 (PKN1) as a biomarker of cardiac surgery-associated AKI (CSA-AKI). METHODS: A prospective cohort study of 110 adults undergoing on-pump cardiac surgery was conducted. The associations between post-operative PKN1 and CSA-AKI, AKI severity, need for renal replacement therapy (RRT), duration of AKI, length of ICU stay, and post-operative hospital stay were evaluated. RESULTS: Patients were categorized into three groups according to PKN1 tertiles. The incidence of CSA-AKI in the third tertile was 3.4-fold higher than that in the first. PKN1 was an independent risk factor for CSA-AKI. The discrimination of PKN1 to CSA-AKI assessed by ROC curve indicated that the AUC was 0.70, and the best cutoff was 5.025 ng/mL. This group (>5.025 ng/mL) was more likely to develop CSA-AKI (p < 0.001). The combined AUC of EuroSCORE, aortic cross-clamp time, and PKN1 was 0.82 (p < 0.001). A higher level of PKN1 was related to increased need for RRT, longer duration of AKI, and length of ICU and post-operative hospital stays. CONCLUSIONS: PKN1 could be a potential biomarker for the prediction of CSA-AKI. The combination of PKN1, EuroSCORE, and aortic cross-clamp time was likely to predict the occurrence of CSA-AKI.


Assuntos
Injúria Renal Aguda , Biomarcadores , Procedimentos Cirúrgicos Cardíacos , Proteína Quinase C , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/sangue , Masculino , Estudos Prospectivos , Feminino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Idoso , Biomarcadores/sangue , Tempo de Internação , Fatores de Risco , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico
4.
Postgrad Med J ; 100(1182): 219-227, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38244550

RESUMO

BACKGROUND: The lack of transparency is a prevalent issue among the current machine-learning (ML) algorithms utilized for predicting mortality risk. Herein, we aimed to improve transparency by utilizing the latest ML explicable technology, SHapley Additive exPlanation (SHAP), to develop a predictive model for critically ill patients. METHODS: We extracted data from the Medical Information Mart for Intensive Care IV database, encompassing all intensive care unit admissions. We employed nine different methods to develop the models. The most accurate model, with the highest area under the receiver operating characteristic curve, was selected as the optimal model. Additionally, we used SHAP to explain the workings of the ML model. RESULTS: The study included 21 395 critically ill patients, with a median age of 68 years (interquartile range, 56-79 years), and most patients were male (56.9%). The cohort was randomly split into a training set (N = 16 046) and a validation set (N = 5349). Among the nine models developed, the Random Forest model had the highest accuracy (87.62%) and the best area under the receiver operating characteristic curve value (0.89). The SHAP summary analysis showed that Glasgow Coma Scale, urine output, and blood urea nitrogen were the top three risk factors for outcome prediction. Furthermore, SHAP dependency analysis and SHAP force analysis were used to interpret the Random Forest model at the factor level and individual level, respectively. CONCLUSION: A transparent ML model for predicting outcomes in critically ill patients using SHAP methodology is feasible and effective. SHAP values significantly improve the explainability of ML models.


Assuntos
Inteligência Artificial , Estado Terminal , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Estado Terminal/terapia , Unidades de Terapia Intensiva , Algoritmos , Cuidados Críticos
5.
Front Bioeng Biotechnol ; 12: 1375586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562670

RESUMO

The safety of crews is the primary concern in the manned lunar landing project, particularly during re-entry as the manned spacecraft returns from a direct Lunar-Earth trajectory. This paper analyzed the crew's chest biomechanical response to assess potential injuries caused by acceleration loads during the re-entry phase. Initially, a sophisticated finite element model of the chest was constructed, whose effectiveness was verified by experiments involving vertebral range of motion, rib lateral rupture, and chest frontal impact. The model was then subjected to the return re-entry loads simulating the Apollo and Chang'e 5 T1 (CE-5T1) test returner to specifically analyze the correlation between the acceleration load and the injury of the crew's chest tissues and organs. The results indicate that the biomechanical response of crew chest bone tissue under the two return missions is within the threshold value and will not directly cause damage. Compared to the Apollo mission, the CE-5T1 mission's load poses a higher risk to internal organs. These findings can enhance the crew's safety and provide reliable assurance for future space exploration.

6.
Front Genet ; 15: 1389630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894720

RESUMO

Introduction: Sepsis leads to multi-organ dysfunction due to disorders of the host response to infections, which makes diagnosis and prognosis challenging. Apoptosis, a classic programmed cell death, contributes to the pathogenesis of various diseases. However, there is much uncertainty about its mechanism in sepsis. Methods: Three sepsis gene expression profiles (GSE65682, GSE13904, and GSE26378) were downloaded from the Gene Expression Omnibus database. Apoptosis-related genes were obtained from the Kyoto Encyclopedia of Genes and Genomes Pathway database. We utilized LASSO regression and SVM-RFE algorithms to identify characteristic genes associated with sepsis. CIBERSORT and single cell sequencing analysis were employed to explore the potential relationship between hub genes and immune cell infiltration. The diagnostic capability of hub genes was validated across multiple external datasets. Subsequently, the animal sepsis model was established to assess the expression levels of hub genes in distinct target organs through RT-qPCR and Immunohistochemistry analysis. Results: We identified 11 apoptosis-related genes as characteristic diagnostic markers for sepsis: CASP8, VDAC2, CHMP1A, CHMP5, FASLG, IFNAR1, JAK1, JAK3, STAT4, IRF9, and BCL2. Subsequently, a prognostic model was constructed using LASSO regression with BCL2, FASLG, IRF9 and JAK3 identified as hub genes. Apoptosis-related genes were closely associated with the immune response during the sepsis process. Furthermore, in the validation datasets, aside from IRF9, other hub genes demonstrated similar expression patterns and diagnostic abilities as observed in GSE65682 dataset. In the mouse model, the expression differences of hub genes between sepsis and control group revealed the potential impacts on sepsis-induced organ injury. Conclusion: The current findings indicated the participant of apoptosis in sepsis, and apoptosis-related differentially expressed genes could be used for diagnosis biomarkers. BCL2, FASLG, IRF9 and JAK3 might be key regulatory genes affecting apoptosis in sepsis. Our findings provided a novel aspect for further exploration of the pathological mechanisms in sepsis.

7.
Heliyon ; 10(1): e22664, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163157

RESUMO

Background: Multiple modes of cell death occur during the development of sepsis. Among these patterns, cuproptosis has recently been identified as a regulated form of cell death. However, its impact on the onset and progression of sepsis remains unclear. Method: We screened a dataset of gene expression profiles from patients with sepsis using the GEO database. Survival analysis was performed to analyze the relationship between cuproptosis-related genes (CRGs) and prognosis. Hub genes were identified through univariate Cox regression analysis. The diagnostic value of hub genes in sepsis was tested in both training sets (GSE65682) and validation sets (GSE134347). To examine the association between hub genes and immune cells, single-sample gene set enrichment analysis (ssGSEA) and Pearson correlation analysis were employed. Additionally, the CRGs were validated in a septic mouse model using real-time quantitative PCR (qRT-PCR) and immunohistochemistry (IHC). Results: In sepsis, most CRGs were upregulated, with only DLD and MTF1 downregulated. High expression of three genes (GLE, LIAS, and PDHB) was associated with better prognosis, but only two hub genes (LIAS, PDHB) reached statistical significance. The receiver operating characteristic (ROC) analysis for diagnosing sepsis showed LIAS had a range of 0.793-0.906, while PDHB achieved values of 0.882 and 0.975 in the training and validation sets, respectively. ssGSEA analysis revealed a lower number of immune cells in the sepsis group, and there was a correlation between immune cell population and CRGs (LIAS, PDHB). Analysis in the septic mouse model demonstrated no significant difference in mRNA expression levels and IHC staining between LIAS and PDHB in heart and liver tissues, but up-regulation was observed in lung tissues. Furthermore, the mRNA expression levels and IHC staining of LIAS and PDHB were down-regulated in renal tissues. Conclusions: Cuproptosis is emerging as a significant factor in the development of sepsis. LIAS and PDHB, identified as potential diagnostic biomarkers for cuproptosis-associated sepsis, are believed to play crucial roles in the initiation and progression of cuproptosis-induced sepsis.

8.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930407

RESUMO

Supercritical water gasification (SCWG) technology is highly promising for its ability to cleanly and efficiently convert biomass to hydrogen. This paper developed a model for the gasification of rice straw in supercritical water (SCW) to predict the direction and limit of the reaction based on the Gibbs free energy minimization principle. The equilibrium distribution of rice straw gasification products was analyzed under a wide range of parameters including temperatures of 400-1200 °C, pressures of 20-50 MPa, and rice straw concentrations of 5-40 wt%. Coke may not be produced due to the excellent properties of supercritical water under thermodynamic constraints. Higher temperatures, lower pressures, and biomass concentrations facilitated the movement of the chemical equilibrium towards hydrogen production. The hydrogen yield was 47.17 mol/kg at a temperature of 650 °C, a pressure of 25 MPa, and a rice straw concentration of 5 wt%. Meanwhile, there is an absorptive process in the rice straw SCWG process for high-calorific value hydrogen production. Energy self-sufficiency of the SCWG process can be maintained by adding small amounts of oxygen (ER < 0.2). This work would be of great value in guiding rice straw SCWG experiments.

9.
Hum Cell ; 37(2): 420-434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133876

RESUMO

Hypothermic machine perfusion (HMP) has been demonstrated to be more effective in mitigating ischemia-reperfusion injury (IRI) of donation after circulatory death (DCD) organs than cold storage (CS), yet the underlying mechanism remains obscure. We aimed to propose a novel therapeutic approach to ameliorate IRI in DCD liver transplantation. Twelve clinical liver samples were randomly assigned to HMP or CS treatment and subsequent transcriptomics analysis was performed. By combining in vivo HMP models, we discovered that HMP attenuated inflammation, oxidative stress, and apoptosis in DCD liver through a SEPRINA3-mediated PI3Kδ/AKT signaling cascade. Moreover, in the hypoxia/reoxygenation (H/R) model of BRL-3A, overexpression of SERPINA3 mitigated H/R-induced apoptosis, while SERPINA3 knockdown exacerbated cell injury. Idelalisib (IDE) treatment also reversed the protective effect of SERPINA3 overexpression. Overall, our research provided new insights into therapeutic strategies and identified potential novel molecular targets for therapeutic intervention against DCD liver.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Serpinas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado/metabolismo , Perfusão , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Serpinas/metabolismo
10.
Int Immunopharmacol ; 129: 111564, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38320352

RESUMO

The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.


Assuntos
Injúria Renal Aguda , Cicloexilaminas , Ferroptose , Fenilenodiaminas , Sepse , Animais , Camundongos , Células Epiteliais , Lipopolissacarídeos , Espécies Reativas de Oxigênio
11.
Cell Death Dis ; 15(7): 473, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956064

RESUMO

Damage to renal tubular epithelial cells (RTECs) signaled the onset and progression of sepsis-associated acute kidney injury (SA-AKI). Recent research on mitochondria has revealed that mitophagy plays a crucial physiological role in alleviating injury to RTECs and it is suppressed progressively by the inflammation response in SA-AKI. However, the mechanism by which inflammation influences mitophagy remains poorly understood. We examined how macrophage migration inhibitory factor (MIF), a pro-inflammatory protein, influences the PINK1-Parkin pathway of mitophagy by studying protein-protein interactions when MIF was inhibited or overexpressed. Surprisingly, elevated levels of MIF were found to directly bind to PINK1, disrupting its interaction with Parkin. This interference hindered the recruitment of Parkin to mitochondria and impeded the initiation of mitophagy. Furthermore, this outcome led to significant apoptosis of RTECs, which could, however, be reversed by an MIF inhibitor ISO-1 and/or a new mitophagy activator T0467. These findings highlight the detrimental impact of MIF on renal damage through its disruption of the interaction between PINK1 and Parkin, and the therapeutic potential of ISO-1 and T0467 in mitigating SA-AKI. This study offers a fresh perspective on treating SA-AKI by targeting MIF and mitophagy.


Assuntos
Injúria Renal Aguda , Fatores Inibidores da Migração de Macrófagos , Mitofagia , Proteínas Quinases , Sepse , Ubiquitina-Proteína Ligases , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Sepse/complicações , Sepse/metabolismo , Animais , Humanos , Mitocôndrias/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Apoptose , Ligação Proteica , Masculino , Oxirredutases Intramoleculares/metabolismo
12.
Shock ; 61(4): 520-526, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369528

RESUMO

ABSTRACT: Background: Normal saline solution (NSS) and Ringer's acetate solution (RAS) are commonly given to critically ill patients as a fundamental fluid therapy. However, the effect of RAS and NSS on sepsis patient outcomes remains unknown. Methods: We conducted a single-center prospective open-label parallel controlled trial to enroll adult patients (>18 years old) diagnosed with sepsis. Participants received either RAS or NSS for intravenous infusion for 5 days. The primary outcome was the incidence of major adverse kidney events within 28 days (MAKE28). Secondary outcomes included 30-/90-day mortality, acute kidney injury, and hyperchloremia. The patients were then reclassified as NSS-only, RAS-only, and RAS + NSS groups according to the type of fluid they had received before enrollment. Thereafter, a secondary post hoc analysis was performed. Results: Two hundred fifty-five septic patients were screened, and 143 patients (51.0% in RAS group and 49.0% in NSS group) were enrolled in the study. Each group received a median of 2 L of fluid administration during five interventional days. Of the patients, 39.3% had received 500 mL (500-1,000 mL) of balanced salt solutions (BSSs) before intensive care unit (ICU) admission. There was no statistical difference among the RAS and NSS group on the primary outcome MAKE28 in the initial analysis (23.3% vs. 20.0%; OR, 1.2 [0.6 to 2.2]; P = 0.69). MAKE28 was observed in 23.3% of RAS-only versus 27.3% of NSS-only group patients (0.82 [0.35-1.94], P = 0.65) in the secondary post hoc analysis. The patients in the NSS-only group had a longer invasive mechanical ventilation days and a trend toward the accumulation of serum chloride. Conclusion: This study observed no statistically significant difference on MAKE28 and secondary outcomes among sepsis patients receiving RAS and NSS. However, it is unclear whether the large amount of fluid resuscitation before ICU admission and carrier NSS narrowed the difference between BSSs and NSSs.


Assuntos
Lactato de Ringer , Solução Salina , Sepse , Adulto , Humanos , Hidratação , Soluções Isotônicas/uso terapêutico , Estudos Prospectivos , Lactato de Ringer/uso terapêutico , Solução de Ringer , Solução Salina/uso terapêutico , Sepse/tratamento farmacológico , Cloreto de Sódio/uso terapêutico
13.
Chem Sci ; 15(19): 7178-7186, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756822

RESUMO

In order to investigate the effect of macrocyclization and catenation on the regulation of vibration-induced emission (VIE), the typical VIE luminogen 9,14-diphenyl-9,14-dihydrodibenzo[a, c]phenazine (DPAC) was introduced into the skeleton of a macrocycle and corresponding [2]catenane to evaluate their dynamic relaxation processes. As investigated in detail by femtosecond transient absorption (TA) spectra, the resultant VIE systems revealed precisely tunable emissions upon changing the solvent viscosity, highlighting the key effect of the formation of [2]catenane. Notably, the introduction of an additional pillar[5]arene macrocycle featuring unique planar chirality endows the resultant chiral VIE-active [2]catenane with attractive circularly polarized luminescence in different states. This work not only develops a new strategy for the design of new luminescent systems with tunable vibration induced emission, but also provides a promising platform for the construction of smart chiral luminescent materials for practical applications.

14.
ACS Sens ; 9(5): 2575-2584, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38695880

RESUMO

Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.


Assuntos
Pressão , Temperatura , Têxteis , Têxteis/análise , Humanos , Incêndios , Bombeiros , Roupa de Proteção , Grafite/química , Dispositivos Eletrônicos Vestíveis
15.
Infect Dis Ther ; 13(4): 941-951, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483776

RESUMO

INTRODUCTION: The replacement intervals for infusion sets may differ among healthcare institutions, which may have an impact on the occurrence of central line-associated bloodstream infections (CLABSI). Nevertheless, there exists a limited amount of high-quality evidence available to assist clinicians in determining the most suitable replacement intervals for infusion sets. Therefore, the objective of this trial is to compare the efficacy of 24-h and 96-h replacement intervals for infusion sets on CLABSI among critically ill adults who have central venous access devices. METHODS: This is a multicenter, parallel-group randomized controlled trial that will investigate the effect of infusion set replacement intervals on CLABSI in adult patients admitted to intensive care units (ICUs). The study will enroll 1240 participants who meet the inclusion criteria, which includes being 18 years or older, expected to stay in the ICU for longer than 96 h, and in need of central venous access. Participants will be randomly assigned to either a control group receiving a 96-h replacement interval or a treatment group receiving a 24-h replacement interval. PLANNED OUTCOME: The primary outcome of this trial is the rate of CLABSI within 28 days after randomization. CONCLUSION: This is the first randomized controlled trial to investigate the effects of infusion set replacement at 24-h and 96-h intervals on CLABSI in ICU patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT05359601.

16.
Front Med (Lausanne) ; 10: 1333209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188335

RESUMO

Introduction: Restored cardiopulmonary function is efficiently achieved by utilizing extracorporeal membrane oxygenation (ECMO). Nevertheless, the incidence of Clostridioides difficile infection (CDI) associated with ECMO is relatively uncommon. Case presentation: In this report, we present the case of a 59-year-old male with severe chest pain due to acute myocardial infarction, subsequently necessitating ECMO support. During the first day of hospitalization, pulmonary infections were observed, and piperacillin-tazobactam was prescribed for 7 days at low dosages. However, the patient developed severe diarrhea 4 days later. After ruling out common pathogens, we suspected the occurrence of CDI and performed genetic testing for C. difficile toxin, confirming our diagnosis. The prescription of vancomycin resulted in slight improvement, while fecal microbiota transplantation (FMT) proved to be more effective. Conclusion: In this case, temporary application of ECMO was applied, and the anti-infective treatment relied on the use of antibiotics at short-term, low-dose, and low CDI risk. Hence, the occurrence of CDI was considered an uncommon event, which may serve as a reference for future cases.

17.
Braz. j. med. biol. res ; 55: e11571, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1364553

RESUMO

The present study was designed to investigate the involvement of miR-23a-3p in the progression of sepsis-induced acute kidney injury (AKI). The expression levels of miR-23a-3p and wnt5a in sepsis-induced AKI patients and lipopolysaccharide (LPS)-treated HK-2 cells were detected by real-time PCR and western blotting. Then, the effects of miR-23a-3p overexpression on cell viability, apoptosis, and inflammatory cytokines secretion in LPS-stimulated HK-2 cells were investigated. Moreover, luciferase reporter assay was performed to confirm the regulatory relationship between miR-23a-3p and wnt5a. Whether miR-23a-3p regulated the activation of Wnt/β-catenin signaling was also explored. mR-23a-3p was lowly expressed in the serum of patients with sepsis-associated AKI and in LPS-treated HK-2 cells. In addition, the overexpression of miR-23a-3p restrained LPS-induced proliferation inhibition and promotion of apoptosis and cytokine production in HK-2 cells. Moreover, wnt5a was identified as a target of miR-23a-3p, which could be negatively regulated by miR-23a-3p. Overexpression of miR-23a-3p suppressed the activation of Wnt/β-catenin signaling in LPS-treated HK-2 cells, which was markedly reversed by wnt5a upregulation. Upregulation of miR-23a-3p may alleviate LPS-induced cell injury by targeting wnt5a and inactivating Wnt/β-catenin pathway, which may serve as a novel therapeutic target for sepsis-associated AKI.

18.
Mil. med. res. (Lond.) ; 7(41): 1-33, Sept. 04, 2020.
Artigo em Inglês | BIGG | ID: biblio-1129883

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID19 patients


Assuntos
Humanos , Adulto , Plasma/imunologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Cloroquina/uso terapêutico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Quimioprevenção/métodos , Receptores de Interleucina-6/uso terapêutico , Antirretrovirais/uso terapêutico , Pandemias/prevenção & controle , Lopinavir/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Hidroxicloroquina/uso terapêutico , Prática Clínica Baseada em Evidências/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA