Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 187(20): 5604-5619.e14, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39208798

RESUMO

We use cryoelectron microscopy (cryo-EM) as a sequence- and culture-independent diagnostic tool to identify the etiological agent of an agricultural pandemic. For the past 4 years, American insect-rearing facilities have experienced a distinctive larval pathology and colony collapse of farmed Zophobas morio (superworm). By means of cryo-EM, we discovered the causative agent: a densovirus that we named Zophobas morio black wasting virus (ZmBWV). We confirmed the etiology of disease by fulfilling Koch's postulates and characterizing strains from across the United States. ZmBWV is a member of the family Parvoviridae with a 5,542 nt genome, and we describe intersubunit interactions explaining its expanded internal volume relative to human parvoviruses. Cryo-EM structures at resolutions up to 2.1 Å revealed single-strand DNA (ssDNA) ordering at the capsid inner surface pinned by base-binding pockets in the capsid inner surface. Also, we demonstrated the prophylactic potential of non-pathogenic strains to provide cross-protection in vivo.


Assuntos
Besouros , Microscopia Crioeletrônica , Animais , Besouros/virologia , Parvovirus/genética , Parvovirus/química , DNA de Cadeia Simples/química , Capsídeo/ultraestrutura , Capsídeo/química , Capsídeo/metabolismo , Genoma Viral , Densovirus/genética , Densovirus/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/epidemiologia , Modelos Moleculares , Filogenia , Larva/virologia
2.
Proc Natl Acad Sci U S A ; 117(33): 20211-20222, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747554

RESUMO

The giant tiger prawn (Penaeus monodon) is a decapod crustacean widely reared for human consumption. Currently, viruses of two distinct lineages of parvoviruses (PVs, family Parvoviridae; subfamily Hamaparvovirinae) infect penaeid shrimp. Here, a PV was isolated and cloned from Vietnamese P. monodon specimens, designated Penaeus monodon metallodensovirus (PmMDV). This is the first member of a third divergent lineage shown to infect penaeid decapods. PmMDV has a transcription strategy unique among invertebrate PVs, using extensive alternative splicing and incorporating transcription elements characteristic of vertebrate-infecting PVs. The PmMDV proteins have no significant sequence similarity with other PVs, except for an SF3 helicase domain in its nonstructural protein. Its capsid structure, determined by cryoelectron microscopy to 3-Å resolution, has a similar surface morphology to Penaeus stylirostris densovirus, despite the lack of significant capsid viral protein (VP) sequence similarity. Unlike other PVs, PmMDV folds its VP without incorporating a ßA strand and displayed unique multimer interactions, including the incorporation of a Ca2+ cation, attaching the N termini under the icosahedral fivefold symmetry axis, and forming a basket-like pentamer helix bundle. While the PmMDV VP sequence lacks a canonical phospholipase A2 domain, the structure of an EDTA-treated capsid, determined to 2.8-Å resolution, suggests an alternative membrane-penetrating cation-dependent mechanism in its N-terminal region. PmMDV is an observed example of convergent evolution among invertebrate PVs with respect to host-driven capsid structure and unique as a PV showing a cation-sensitive/dependent basket structure for an alternative endosomal egress.


Assuntos
Evolução Biológica , Proteínas do Capsídeo/genética , Densovirus/genética , Penaeidae/virologia , Animais , Regulação Viral da Expressão Gênica , Genoma Viral
3.
J Virol ; 95(19): e0084321, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260280

RESUMO

Adeno-associated viruses (AAVs) are small nonenveloped single-stranded DNA (ssDNA) viruses that are currently being developed as gene therapy biologics. After cell entry, AAVs traffic to the nucleus using the endo-lysosomal pathway. The subsequent decrease in pH triggers conformational changes to the capsid that enable the externalization of the capsid protein (VP) N termini, including the unique domain of the minor capsid protein VP1 (VP1u), which permits the phospholipase activity required for the capsid lysosomal egress. Here, we report the AAV9 capsid structure, determined at the endosomal pHs (7.4, 6.0, 5.5, and 4.0), and terminal galactose-bound AAV9 capsids at pHs 7.4 and 5.5 using cryo-electron microscopy and three-dimensional image reconstruction. Taken together, these studies provide insight into AAV9 capsid conformational changes at the 5-fold pore during endosomal trafficking, in both the presence and absence of its cellular glycan receptor. We visualized, for the first time, that acidification induces the externalization of the VP3 and possibly VP2 N termini, presumably in prelude to the externalization of VP1u at pH 4.0, which is essential for lysosomal membrane disruption. In addition, the structural study of AAV9-galactose interactions demonstrates that AAV9 remains attached to its glycan receptor at the late endosome pH 5.5. This interaction significantly alters the conformational stability of the variable region I of the VPs, as well as the dynamics associated with VP N terminus externalization. IMPORTANCE There are 13 distinct Adeno-associated virus (AAV) serotypes that are structurally homologous and whose capsid proteins (VP1 to -3) are similar in amino acid sequence. However, AAV9 is one of the most commonly studied and is used as a gene therapy vector. This is partly because AAV9 is capable of crossing the blood-brain barrier and readily transduces a wide array of tissues, including the central nervous system. In this study, we provide AAV9 capsid structural insight during intracellular trafficking. Although the AAV capsid has been shown to externalize the N termini of its VPs, to enzymatically disrupt the lysosome membrane at low pH, there was no structural evidence to confirm this. By utilizing AAV9 as our model, we provide the first structural evidence that the externalization process occurs at the protein interface at the icosahedral 5-fold symmetry axis and can be triggered by lowering the pH.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , Dependovirus/química , Dependovirus/ultraestrutura , Endossomos/metabolismo , Galactose/metabolismo , Polissacarídeos/metabolismo , Acetilgalactosamina/metabolismo , Capsídeo/química , Microscopia Crioeletrônica , Dependovirus/metabolismo , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Receptores Virais/metabolismo
4.
Arch Virol ; 165(9): 2133-2146, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533329

RESUMO

Parvoviridae, a diverse family of small single-stranded DNA viruses was established in 1975. It was divided into two subfamilies, Parvovirinae and Densovirinae, in 1993 to accommodate parvoviruses that infect vertebrate and invertebrate animals, respectively. This relatively straightforward segregation, using host association as the prime criterion for subfamily-level classification, has recently been challenged by the discovery of divergent, vertebrate-infecting parvoviruses, dubbed "chapparvoviruses", which have proven to be more closely related to viruses in certain Densovirinae genera than to members of the Parvovirinae. Viruses belonging to these genera, namely Brevi-, Hepan- and Penstyldensovirus, are responsible for the unmatched heterogeneity of the subfamily Densovirinae when compared to the Parvovirinae in matters of genome organization, protein sequence homology, and phylogeny. Another genus of Densovirinae, Ambidensovirus, has challenged traditional parvovirus classification, as it includes all newly discovered densoviruses with an ambisense genome organization, which introduces genus-level paraphyly. Lastly, current taxon definition and virus inclusion criteria have significantly limited the classification of certain long-discovered parvoviruses and impedes the classification of some potential family members discovered using high-throughput sequencing methods. Here, we present a new and updated system for parvovirus classification, which includes the introduction of a third subfamily, Hamaparvovirinae, resolves the paraphyly within genus Ambidensovirus, and introduces new genera and species into the subfamily Parvovirinae. These proposals were accepted by the ICTV in 2020 March.


Assuntos
Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvoviridae/classificação , Parvoviridae/fisiologia , Filogenia , Animais , Especificidade de Hospedeiro , Humanos , Parvoviridae/genética , Parvoviridae/isolamento & purificação , Proteínas Virais/genética
5.
J Gen Virol ; 100(3): 367-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30672729

RESUMO

Members of the family Parvoviridae are small, resilient, non-enveloped viruses with linear, single-stranded DNA genomes of 4-6 kb. Viruses in two subfamilies, the Parvovirinae and Densovirinae, are distinguished primarily by their respective ability to infect vertebrates (including humans) versus invertebrates. Being genetically limited, most parvoviruses require actively dividing host cells and are host and/or tissue specific. Some cause diseases, which range from subclinical to lethal. A few require co-infection with helper viruses from other families. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Parvoviridae, which is available at www.ictv.global/report/parvoviridae.


Assuntos
Infecções por Parvoviridae/virologia , Parvoviridae/classificação , Filogenia , Animais , Genoma Viral , Humanos , Parvoviridae/genética , Parvoviridae/isolamento & purificação , Parvoviridae/ultraestrutura , Virologia/organização & administração
7.
J Virol ; 90(16): 7350-7367, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252531

RESUMO

UNLABELLED: E4orf6 proteins from all human adenoviruses form Cullin-based ubiquitin ligase complexes that, in association with E1B55K, target cellular proteins for degradation. While most are assembled with Cul5, a few utilize Cul2. BC-box motifs enable all these E4orf6 proteins to assemble ligase complexes with Elongins B and C. We also identified a Cul2-box motif used for Cul2 selection in all Cul2-based complexes. With this information, we set out to determine if other adenoviruses also possess the ability to form the ligase complex and, if so, to predict their Cullin usage. Here we report that all adenoviruses known to encode an E4orf6-like protein (mastadenoviruses and atadenoviruses) maintain the potential to form the ligase complex. We could accurately predict Cullin usage for E4orf6 products of mastadenoviruses and all but one atadenovirus. Interestingly, in nonhuman primate adenoviruses, we found a clear segregation of Cullin binding, with Cul5 utilized by viruses infecting great apes and Cul2 by Old/New World monkey viruses, suggesting that a switch from Cul2 to Cul5 binding occurred during the period when great apes diverged from monkeys. Based on the analysis of Cullin selection, we also suggest that the majority of human adenoviruses, which exhibit a broader tropism for the eye and the respiratory tract, exhibit Cul5 specificity and resemble viruses infecting great apes, whereas those that infect the gastrointestinal tract may have originated from monkey viruses that share Cul2 specificity. Finally, aviadenoviruses also appear to contain E4orf6 genes that encode proteins with a conserved XCXC motif followed by, in most cases, a BC-box motif. IMPORTANCE: Two early adenoviral proteins, E4orf6 and E1B55K, form a ubiquitin ligase complex with cellular proteins to ubiquitinate specific substrates, leading to their degradation by the proteasome. In studies with representatives of each human adenovirus species, we (and others) previously discovered that some viruses use Cul2 to form the complex, while others use Cul5. In the present study, we expanded our analyses to all sequenced adenoviruses and found that E4orf6 genes from all mast- and atadenoviruses encode proteins containing the motifs necessary to form the ligase complex. We found a clear separation in Cullin specificity between adenoviruses of great apes and Old/New World monkeys, lending support for a monkey origin for human viruses of the Human mastadenovirus A, F, and G species. We also identified previously unrecognized E4orf6 genes in the aviadenoviruses that encode proteins containing motifs permitting formation of the ubiquitin ligase.


Assuntos
Adenoviridae/genética , Proteínas E4 de Adenovirus/metabolismo , Proteínas Culina/metabolismo , Evolução Molecular , Ubiquitina-Proteína Ligases/análise , Proteínas E4 de Adenovirus/genética , Animais , Humanos , Primatas
8.
Arch Virol ; 162(7): 2035-2040, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28283815

RESUMO

Harbour porpoises (Phocoena phocoena) are the most prevalent cetaceans in the North Sea. The fecal viral flora of 21 harbour porpoises stranded along the Dutch coastline was analyzed by a metagenomics approach. Sequences of a novel cetacean mastadenovirus, designated harbour porpoise adenovirus 1 (HpAdV-1), were detected. The sequence of a 23-kbp genomic region, spanning the conserved late region, was determined using primer walking. Phylogenetic analysis indicated that HpAdV-1 is most closely related to bottlenose dolphin adenovirus and clusters with Cetartiodactyla adenoviruses. The prevalence of HpAdV-1 was low (2.6%) based on targeted PCR-screening of the intestinal contents of 151 harbour porpoises stranded between 2010 and 2013.


Assuntos
Infecções por Adenoviridae/veterinária , Adenoviridae/genética , Adenoviridae/isolamento & purificação , Doenças dos Animais/virologia , Phocoena/virologia , Sequência de Aminoácidos , Animais , Fezes/virologia , Metagenômica , Mar do Norte , Filogenia
9.
J Invertebr Pathol ; 147: 23-36, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32781498

RESUMO

A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy.

10.
J Invertebr Pathol ; 140: 83-96, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27663091

RESUMO

A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy.


Assuntos
Vírus de DNA/genética , Evolução Molecular , Invertebrados/virologia , Animais , DNA de Cadeia Simples
11.
J Gen Virol ; 96(9): 2769-2779, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26067293

RESUMO

Here, we report the detection and partial genome characterization of two novel reptilian parvoviruses derived from a short-tailed pygmy chameleon (Rampholeon brevicaudatus) and a corn snake (Pantherophis guttatus) along with the complete genome analysis of the first lizard parvovirus, obtained from four bearded dragons (Pogona vitticeps). Both homology searches and phylogenetic tree reconstructions demonstrated that all are members of the genus Dependoparvovirus. Even though most dependoparvoviruses replicate efficiently only in co-infections with large DNA viruses, no such agents could be detected in one of the bearded dragon samples, hence the possibility of autonomous replication was explored. The alternative ORF encoding the full assembly activating protein (AAP), typical for the genus, could be obtained from reptilian parvoviruses for the first time, with a structure that appears to be more ancient than that of avian and mammalian parvoviruses. All three viruses were found to harbour short introns as previously observed for snake adeno-associated virus, shorter than that of any non-reptilian dependoparvovirus. According to the phylogenetic calculations based on full non-structural protein (Rep) and AAP sequences, the monophyletic cluster of reptilian parvoviruses seems to be the most basal out of all lineages of genus Dependoparvovirus. The suspected ability for autonomous replication, results of phylogenetic tree reconstruction, intron lengths and the structure of the AAP suggested that a single Squamata origin instead of the earlier assumed diapsid (common avian-reptilian) origin is more likely for the genus Dependoparvovirus of the family Parvoviridae.


Assuntos
Colubridae/virologia , Evolução Molecular , Genoma Viral , Lagartos/virologia , Infecções por Parvoviridae/veterinária , Parvovirus/genética , Parvovirus/isolamento & purificação , Animais , Sequência de Bases , Dados de Sequência Molecular , Infecções por Parvoviridae/virologia , Parvovirinae/classificação , Parvovirinae/genética , Parvovirinae/isolamento & purificação , Parvovirus/classificação , Filogenia
12.
J Virol ; 88(19): 11304-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056898

RESUMO

UNLABELLED: Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE: Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins-one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton base. This observation raises new intriguing questions on virus structure. How can the triple fiber attach to a pentameric vertex? What determines the number and location of each vertex type in the icosahedral particle? Since fibers are responsible for primary attachment to the host, this novel architecture also suggests a novel mode of cell entry for LAdV-2. Adenoviruses have a recognized potential in nanobiomedicine, but only a few of the more than 200 types found so far in nature have been characterized in detail. Exploring the taxonomic wealth of adenoviruses should improve our chances to successfully use them as therapeutic tools.


Assuntos
Atadenovirus/genética , Proteínas do Capsídeo/genética , DNA Viral/genética , Genoma Viral , Lagartos/virologia , Vírion/genética , Sequência de Aminoácidos , Animais , Atadenovirus/classificação , Atadenovirus/ultraestrutura , Composição de Bases , Sequência de Bases , Proteínas do Capsídeo/ultraestrutura , DNA/genética , Expressão Gênica , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírion/ultraestrutura
13.
Acta Vet Hung ; 62(2): 284-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24796576

RESUMO

To explore the diversity of some DNA viruses in reptiles, a continuous screening is going on, in our laboratory, by PCR using different consensus primers designed for the detection of the most conserved genome regions of adeno-, herpes- and parvoviruses. The test material consists essentially of dead specimens collected randomly from private pet owners, local pet shops, or at occasional exotic pet fairs. Here we report the partial sequence of a putative novel parvovirus obtained from a dead checkerboard worm lizard (Trogonophis wiegmanni) that had been wild-caught in its native habitat. An in-house-developed PCR with consensus primers targeting the gene of the parvoviral capsid protein was used. Other PCRs, intended to detect certain large DNA viruses, remained negative. The sequence of the PCR product indicated the presence of a hitherto unknown parvovirus in the internal organs of the checkerboard worm lizard. In phylogeny reconstruction, the novel sequence clustered with the members of the Dependovirus genus of the Parvoririnae subfamily, closest to the branch of snake adeno-associated virus. Since we could not demonstrate the presence of a potential helper virus, the putative amphisbaenian parvovirus supposedly can replicate autonomously. This is the first virus infection ever detected in any members of the suborder Amphisbaenia, and only the third parvoviral sequence obtained from any reptilian host.

14.
Acta Vet Hung ; 62(1): 134-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334078

RESUMO

The negative samples of a collection, established originally for seeking new adeno- and herpesviruses in lower vertebrates, were screened for the pres-ence of circoviruses by a consensus nested PCR targeting the gene coding for the replication-associated protein. Six fish samples representing five species, namely asp (Aspius aspius), roach (Rutilus rutilus), common bream (Abramis brama), round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis), as well as three frog samples were found positive for circoviral DNA. Sequence analysis of the amplicons indicated the presence of three novel putative circo-like viruses and a circovirus in Hungarian fishes and one novel circovirus in a common toad (Bufo bufo), and another one in a dead and an alive specimen of green tree frog (Litoria caerulea), respectively. In phylogeny reconstruction, the putative bream circovirus clustered together with circoviruses discovered in other cyprinid fishes recently. Three other piscine circoviral sequences appeared closest to sequences derived from different environmental samples. Surprisingly, the nucleotide sequence derived from two fish samples (a bream and a monkey goby) proved to be from porcine circovirus 2 (PCV2), almost identical to a sequence detected in Sweden previously. This is the first report on the detection of PCV2 in fish and circoviral DNA in amphibian hosts.

15.
Nat Commun ; 14(1): 3515, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316488

RESUMO

Parvoviruses (family Parvoviridae) are currently defined by a linear monopartite ssDNA genome, T = 1 icosahedral capsids, and distinct structural (VP) and non-structural (NS) protein expression cassettes within their genome. We report the discovery of a parvovirus with a bipartite genome, Acheta domesticus segmented densovirus (AdSDV), isolated from house crickets (Acheta domesticus), in which it is pathogenic. We found that the AdSDV harbors its NS and VP cassettes on two separate genome segments. Its vp segment acquired a phospholipase A2-encoding gene, vpORF3, via inter-subfamily recombination, coding for a non-structural protein. We showed that the AdSDV evolved a highly complex transcription profile in response to its multipartite replication strategy compared to its monopartite ancestors. Our structural and molecular examinations revealed that the AdSDV packages one genome segment per particle. The cryo-EM structures of two empty- and one full-capsid population (3.3, 3.1 and 2.3 Å resolution) reveal a genome packaging mechanism, which involves an elongated C-terminal tail of the VP, "pinning" the ssDNA genome to the capsid interior at the twofold symmetry axis. This mechanism fundamentally differs from the capsid-DNA interactions previously seen in parvoviruses. This study provides new insights on the mechanism behind ssDNA genome segmentation and on the plasticity of parvovirus biology.


Assuntos
Densovirus , Gryllidae , Infecções por Parvoviridae , Parvovirus , Animais , Densovirus/genética , Morfogênese , Proteínas do Capsídeo/genética , DNA de Cadeia Simples/genética , Parvovirus/genética
16.
Virus Evol ; 8(1): veac056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783582

RESUMO

Amdoparvoviruses (genus Amdoparvovirus, family Parvoviridae) are primarily viruses of carnivorans, but recent studies have indicated that their host range might also extend to rodents and chiropterans. While their classification is based on the full sequence of the major nonstructural protein (NS1), several studies investigating amdoparvoviral diversity have been focused on partial sequences, leading to difficulties in accurately determining species demarcations and leaving several viruses unclassified. In this study, while reporting the complete genomic sequence of a novel amdoparvovirus identified in an American mink (British Columbia amdoparvovirus, BCAV), we studied the phylogenetic relationships of all amdoparvovirus-related sequences and provide a comprehensive reevaluation of their diversity and evolution. After excluding recombinant sequences, phylogenetic and pairwise sequence identity analyses allowed us to define fourteen different viruses, including the five currently classified species, BCAV, and four additional viruses that fulfill the International Committee on Taxonomy of Viruses criteria to be classified as species. We show that the group of viruses historically known as Aleutian mink disease virus (species Carnivore amdoparvovirus 1) should be considered as a cluster of at least four separate viral species that have been co-circulating in mink farms, facilitating the occurrence of inter-species recombination. Genome organization, splicing donor and acceptor sites, and protein sequence motifs were surprisingly conserved within the genus. The sequence of the major capsid protein virus protein 2 (VP2) was significantly more conserved between and within species compared to NS1, a phenomenon possibly linked to antibody-dependent enhancement (ADE). Homology models suggest a remarkably high degree of conservation of the spikes located near the icosahedral threefold axis of the capsid, comprising the surface region associated with ADE. A surprisingly high number of divergent amino acid positions were found in the luminal threefold and twofold axes of the capsid, regions of hitherto unknown function. We emphasize the importance of complete genome analyses and, given the marked phylogenetic inconsistencies across the genome, advise to obtain the complete coding sequences of divergent strains. Further studies on amdoparvovirus biology and structure as well as epidemiological and virus discovery investigations are required to better characterize the ecology and evolution of this important group of viruses.

17.
Infect Genet Evol ; 83: 104321, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32302697

RESUMO

Bearded dragon adenovirus 1 (BDAdV-1), also known as agamid adenovirus 1, has been described worldwide as a prevalent infectious agent of the inland bearded dragon (Pogona vitticeps), the most common squamate exotic pet reptile. Previous limited sequence data of the adenoviral DNA polymerase and hexon genes indicated that BDAdV-1 is a member of genus Atadenovirus family Adenoviridae. Atadenoviruses infect ruminants, marsupials, testudine reptiles and birds, yet the genus has been shown to be of squamate reptile origin. Here, we report a screening survey along with the complete genome sequence of BDAdV-1, derived directly from the sample of a deceased juvenile dragon showing central nervous system signs prior to passing. The BDAdV-1 genome is 35,276 bp and contains 32 putative genes. Its genome organization is characteristic of the members of genus Atadenovirus, however, a divergent LH3 gene indicates structural interactions of different nature compared to other genus members such as snake adenovirus 1. We identified five novel open reading frames (ORFs), three of which encode proteins of the C-type lectin-like domain (CTLD) superfamily. ORF3 has a CTLD group II-like domain architecture displaying structural similarity with natural killer cell surface receptors and with an alphaherpesviral virulence factor gene for neurotropism, UL45. ORF4 and 6 are extremely long compared to typical adenoviral right-end genes and possibly encode members of the CTLD superfamily with novel, previously undescribed domain architectures. BDAdV-1 is the hitherto most divergent member of genus Atadenovirus providing new insights on adenoviral diversity, evolution and pathogenesis.


Assuntos
Adenoviridae/genética , Genoma Viral , Lagartos/virologia , Proteínas Virais/química , Adenoviridae/isolamento & purificação , Animais , Lectinas Tipo C/química , Filogenia , Domínios Proteicos , Proteínas Virais/genética
18.
Virus Evol ; 6(2): veaa043, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32913662

RESUMO

Endogenous viral elements (EVEs) are genetic remnants of viruses that have integrated into host genomes millions of years ago and retained as heritable elements passed on to offspring until present-day. As a result, EVEs provide an opportunity to analyse the genomes of extinct viruses utilizing these genomic viral fossils to study evolution of viruses over large timescales. Analysis of sequences from near full-length EVEs of dependoparvoviral origin identified within three mammalian taxa, Whippomorpha (whales and hippos), Vespertilionidae (smooth-nosed bats), and Lagomorpha (rabbits, hares, and pikas), indicates that distinct ancestral dependoparvovirus species integrated into these host genomes approximately 77 to 23 million years ago. These ancestral viruses are unique relative to modern adeno-associated viruses (AAVs), and distinct from extant species of genus Dependoparvovirus. These EVE sequences show characteristics previously unseen in modern, mammalian AAVs, but instead appear more similar to the more primitive, autonomously replicating and pathogenic waterfowl dependoparvoviruses. Phylogeny reconstruction suggests that the whippomorph EVE orthologue derives from exogenous ancestors of autonomous and highly pathogenic dependoparvovirus lineages, believed to have uniquely co-evolved with waterfowl birds to present date. In contrast, ancestors of the two other mammalian orthologues (Lagomorpha and Vespertilionidae) likely shared the same lineage as all other known mammalian exogenous AAVs. Comparative in silico analysis of the EVE genomes revealed remarkable overall conservation of AAV rep and cap genes, despite millions of years of integration within the host germline. Modelling these proteins identified unexpected variety, even between orthologues, in previously defined capsid viral protein (VP) variable regions, especially in those related to the three- and fivefold symmetry axes of the capsid. Moreover, the normally well-conserved phospholipase A2 domain of the predicted minor VP1 also exhibited a high degree of sequence variance. These findings may indicate unique biological properties for these virus 'fossils' relative to extant dependoparvoviruses and suggest key regions to explore within capsid sequences that may confer novel properties for engineered gene therapy vectors based on paleovirology data.

19.
Viruses ; 11(4)2019 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31010002

RESUMO

Parvoviruses, infecting vertebrates and invertebrates, are a family of single-stranded DNA viruses with small, non-enveloped capsids with T = 1 icosahedral symmetry. A quarter of a century after the first parvovirus capsid structure was published, approximately 100 additional structures have been analyzed. This first structure was that of Canine Parvovirus, and it initiated the practice of structure-to-function correlation for the family. Despite high diversity in the capsid viral protein (VP) sequence, the structural topologies of all parvoviral capsids are conserved. However, surface loops inserted between the core secondary structure elements vary in conformation that enables the assembly of unique capsid surface morphologies within individual genera. These variations enable each virus to establish host niches by allowing host receptor attachment, specific tissue tropism, and antigenic diversity. This review focuses on the diversity among the parvoviruses with respect to the transcriptional strategy of the encoded VPs, the advances in capsid structure-function annotation, and therapeutic developments facilitated by the available structures.


Assuntos
Proteínas do Capsídeo/química , Parvovirus/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Infecções por Parvoviridae/virologia , Parvovirus/genética , Parvovirus/ultraestrutura , Conformação Proteica , Estrutura Secundária de Proteína
20.
Viruses ; 11(6)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174309

RESUMO

Chapparvoviruses (ChPVs) comprise a divergent, recently identified group of parvoviruses (family Parvoviridae), associated with nephropathy in immunocompromised laboratory mice and with prevalence in deep sequencing results of livestock showing diarrhea. Here, we investigate the biological and evolutionary characteristics of ChPVs via comparative in silico analyses, incorporating sequences derived from endogenous parvoviral elements (EPVs) as well as exogenous parvoviruses. We show that ChPVs are an ancient lineage within the Parvoviridae, clustering separately from members of both currently established subfamilies. Consistent with this, they exhibit a number of characteristic features, including several putative auxiliary protein-encoding genes, and capsid proteins with no sequence-level homology to those of other parvoviruses. Homology modeling indicates the absence of a ß-A strand, normally part of the luminal side of the parvoviral capsid protein core. Our findings demonstrate that the ChPV lineage infects an exceptionally broad range of host species, including both vertebrates and invertebrates. Furthermore, we observe that ChPVs found in fish are more closely related to those from invertebrates than they are to those of amniote vertebrates. This suggests that transmission between distantly related host species may have occurred in the past and that the Parvoviridae family can no longer be divided based on host affiliation.


Assuntos
Especificidade de Hospedeiro , Invertebrados/virologia , Infecções por Parvoviridae/virologia , Parvovirus/classificação , Parvovirus/genética , Vertebrados/virologia , Animais , Proteínas do Capsídeo/genética , Evolução Molecular , Peixes/virologia , Genoma Viral , Parvoviridae/classificação , Parvoviridae/genética , Filogenia , Análise de Sequência , Homologia de Sequência , Proteínas Virais/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA