RESUMO
BACKGROUND: miRNAs are master regulators of signaling pathways critically involved in asthma and are transferred between cells in extracellular vesicles (EV). We aimed to investigate whether the miRNA content of EV secreted by primary normal human bronchial epithelial cells (NHBE) is altered upon asthma development. METHODS: NHBE cells were cultured at air-liquid interface and treated with interleukin (IL)-13 to induce an asthma-like phenotype. EV isolations by precipitation from basal culture medium or apical surface wash were characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blot, and EV-associated miRNAs were identified by a RT-qPCR-based profiling. Significant candidates were confirmed in EVs isolated by size-exclusion chromatography from nasal lavages of children with mild-to-moderate (n = 8) or severe asthma (n = 9), and healthy controls (n = 9). RESULTS: NHBE cells secrete EVs to the apical and basal side. 47 miRNAs were expressed in EVs and 16 thereof were significantly altered in basal EV upon IL-13 treatment. Expression of miRNAs could be confirmed in EVs from human nasal lavages. Of note, levels of miR-92b, miR-210, and miR-34a significantly correlated with lung function parameters in children (FEV1 FVC%pred and FEF25-75%pred ), thus lower sEV-miRNA levels in nasal lavages associated with airway obstruction. Subsequent ingenuity pathway analysis predicted the miRNAs to regulate Th2 polarization and dendritic cell maturation. CONCLUSION: Our data indicate that secretion of miRNAs in EVs from the airway epithelium, in particular miR-34a, miR-92b, and miR-210, might be involved in the early development of a Th2 response in the airways and asthma.
Assuntos
Asma/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Mucosa Respiratória/metabolismo , Adolescente , Asma/induzido quimicamente , Diferenciação Celular/imunologia , Polaridade Celular/imunologia , Células Cultivadas , Criança , Células Dendríticas/imunologia , Feminino , Humanos , Interleucina-13/farmacologia , Masculino , MicroRNAs/genética , Lavagem Nasal , Transdução de Sinais/imunologia , Células Th2/imunologia , TranscriptomaRESUMO
OBJECTIVES: Anti-alpha enolase antibodies have been detected in systemic sclerosis (SSc), but little is known on their fine specificity and their predictive value on single disease manifestations. The aim of this work is to perform an epitope mapping of alpha enolase by means of truncated recombinant proteins and to analyse the clinico-serological correlations of anti-alpha enolase antibodies in SSc patients. METHODS: Thirty-eight SSc patients were recruited and fully clinically and serologically characterised. Plasmids encoding full length and truncated polypeptides of alpha enolase were generated; the polypeptides were purified under native conditions and used in dot blot to test sera from SSc patients and controls. The densitometric values obtained on all the polypeptides with anti-IgG subclass specific antibodies were analysed by cluster analysis and partial least square regression. RESULTS: Anti-alpha enolase antibodies (mostly IgG1 and IgG2) are detected in 47% of SSc patients. IgG1 target the amino terminal region of alpha enolase, while IgG2 are more restricted to the central portion of the molecule. Anti-alpha enolase antibodies are not associated with disease-specific antibodies or with interstitial lung disease and do not identify patients affected by the limited vs. diffuse form. CONCLUSIONS: Anti-alpha enolase antibodies are very frequent in SSc but are not associated with clinical or serological features of the disease. Further studies on larger cohorts of patients are necessary to define their possible contribution in defining specific subsets of the disease.
Assuntos
Fosfopiruvato Hidratase , Escleroderma Sistêmico , Autoanticorpos , Mapeamento de Epitopos , Humanos , Imunoglobulina GRESUMO
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNA molecules mediating the translational repression and degradation of target mRNAs in the cell. Mature miRNAs are used as a template by the RNA-induced silencing complex (RISC) to recognize the complementary mRNAs to be regulated. To discern further RISC functions, we analyzed the activities of two RISC proteins, AGO2 and GW182, in the MCF-7 human breast cancer cell line. METHODS: We performed three RIP-Chip experiments using either anti-AGO2 or anti-GW182 antibodies and compiled a data set made up of the miRNA and mRNA expression profiles of three samples for each experiment. Specifically, we analyzed the input sample, the immunoprecipitated fraction and the unbound sample resulting from the RIP experiment. We used the expression profile of the input sample to compute several variables, using formulae capable of integrating the information on miRNA binding sites, both in the 3'UTR and coding regions, with miRNA and mRNA expression level profiles. We compared immunoprecipitated vs unbound samples to determine the enriched or underrepresented genes in the immunoprecipitated fractions, independently for AGO2 and GW182 related samples. RESULTS: For each of the two proteins, we trained and tested several support vector machine algorithms capable of distinguishing the enriched from the underrepresented genes that were experimentally detected. The most efficient algorithm for distinguishing the enriched genes in AGO2 immunoprecipitated samples was trained by using variables involving the number of binding sites in both the 3'UTR and coding region, integrated with the miRNA expression profile, as expected for miRNA targets. On the other hand, we found that the best variable for distinguishing the enriched genes in the GW182 immunoprecipitated samples was the length of the coding region. CONCLUSIONS: Due to the major role of GW182 in GW/P-bodies, our data suggests that the AGO2-GW182 RISC recruits genes based on miRNA binding sites in the 3'UTR and coding region, but only the longer mRNAs probably remain sequestered in GW/P-bodies, functioning as a repository for translationally silenced RNAs.
Assuntos
Proteínas Argonautas/metabolismo , Autoantígenos/metabolismo , Imunoprecipitação da Cromatina/métodos , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Argonautas/genética , Autoantígenos/genética , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células MCF-7 , MicroRNAs/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Máquina de Vetores de SuporteRESUMO
BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA) is an aggressive tumor, and patients typically present with late-stage disease; rates of 5-year survival after pancreaticoduodenectomy are low. Antibodies against α-enolase (ENO1), a glycolytic enzyme, are detected in more than 60% of patients with PDA, and ENO1-specific T cells inhibit the growth of human pancreatic xenograft tumors in mice. We investigated whether an ENO1 DNA vaccine elicits antitumor immune responses and prolongs survival of mice that spontaneously develop autochthonous, lethal pancreatic carcinomas. METHODS: We injected and electroporated a plasmid encoding ENO1 (or a control plasmid) into Kras(G12D)/Cre (KC) mice and Kras(G12D)/Trp53(R172H)/Cre (KPC) mice at 4 weeks of age (when pancreatic intraepithelial lesions are histologically evident). Antitumor humoral and cellular responses were analyzed by histology, immunohistochemistry, enzyme-linked immunosorbent assays, flow cytometry, and enzyme-linked immunosorbent spot and cytotoxicity assays. Survival was analyzed by Kaplan-Meier analysis. RESULTS: The ENO1 vaccine induced antibody and a cellular response and increased survival times by a median of 138 days in KC mice and 42 days in KPC mice compared with mice given the control vector. On histologic analysis, the vaccine appeared to slow tumor progression. The vaccinated mice had increased serum levels of anti-ENO1 immunoglobulin G, which bound the surface of carcinoma cells and induced complement-dependent cytotoxicity. ENO1 vaccination reduced numbers of myeloid-derived suppressor cells and T-regulatory cells and increased T-helper 1 and 17 responses. CONCLUSIONS: In a genetic model of pancreatic carcinoma, vaccination with ENO1 DNA elicits humoral and cellular immune responses against tumors, delays tumor progression, and significantly extends survival. This vaccination strategy might be developed as a neoadjuvant therapy for patients with PDA.
Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Imunidade Celular/imunologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Fosfopiruvato Hidratase/imunologia , Vacinação/métodos , Vacinas de DNA/farmacologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Neoplasias Experimentais/genética , Neoplasias Experimentais/mortalidade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Taxa de SobrevidaRESUMO
BACKGROUND: The human ERBB2 gene is frequently amplified in breast tumors, and its high expression is associated with poor prognosis. We previously reported a significant inverse correlation between Myc promoter-binding protein-1 (MBP-1) and ERBB2 expression in primary breast invasive ductal carcinoma (IDC). MBP-1 is a transcriptional repressor of the c-MYC gene that acts by binding to the P2 promoter; only one other direct target of MBP-1, the COX2 gene, has been identified so far. METHODS: To gain new insights into the functional relationship linking MBP-1 and ERBB2 in breast cancer, we have investigated the effects of MBP-1 expression on endogenous ERBB2 transcript and protein levels, as well as on transcription promoter activity, by transient-transfection of SKBr3 cells. Reporter gene and chromatin immunoprecipitation assays were used to dissect the ERBB2 promoter and identify functional MBP-1 target sequences. We also investigated the relative expression of MBP-1 and HDAC1 in IDC and normal breast tissues by immunoblot analysis and immunohistochemistry. RESULTS: Transfection experiments and chromatin immunoprecipitation assays in SKBr3 cells indicated that MBP-1 negatively regulates the ERBB2 gene by binding to a genomic region between nucleotide -514 and -262 of the proximal promoter; consistent with this, a concomitant recruitment of HDAC1 and loss of acetylated histone H4 was observed. In addition, we found high expression of MBP-1 and HDAC1 in normal tissues and a statistically significant inverse correlation with ErbB2 expression in the paired tumor samples. CONCLUSIONS: Altogether, our in vitro and in vivo data indicate that the ERBB2 gene is a novel MBP-1 target, and immunohistochemistry analysis of primary tumors suggests that the concomitant high expression of MBP-1 and HDAC1 may be considered a diagnostic marker of cancer progression for breast IDC.
Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes erbB-2 , Histona Desacetilase 1/metabolismo , Proteínas de Neoplasias/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Regiões Promotoras Genéticas , Receptor ErbB-2/metabolismo , Células Tumorais CultivadasRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with a very poor 5-year survival rate. alpha-Enolase is a glycolytic enzyme that also acts as a surface plasminogen receptor. We find that it is overexpressed in PDAC and present on the cell surface of PDAC cell lines. The clinical correlation of its expression with tumor status has been reported for lung and hepatocellular carcinoma. We have previously demonstrated that sera from PDAC patients contain IgG autoantibodies to alpha-enolase. The present work was intended to assess the ability of alpha-enolase to induce antigen-specific T cell responses. We show that alpha-enolase-pulsed dendritic cells (DC) specifically stimulate healthy autologous T cells to proliferate, secrete IFN-gamma and lyse PDAC cells but not normal cells. In vivo, alpha-enolase-specific T cells inhibited the growth of PDAC cells in immunodeficient mice. In 8 out of 12 PDAC patients with circulating IgG to alpha-enolase, the existence of alpha-enolase-specific T cells was also demonstrated. Taken as a whole, these results indicate that alpha-enolase elicits a PDAC-specific, integrated humoral and cellular response. It is thus a promising and clinically relevant molecular target candidate for immunotherapeutic approaches as new adjuvants to conventional treatments in pancreatic cancer.
Assuntos
Anticorpos Antineoplásicos/imunologia , Antígenos de Neoplasias/imunologia , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/imunologia , Proliferação de Células , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/imunologia , Fosfopiruvato Hidratase/metabolismo , Linfócitos T , Animais , Formação de Anticorpos , Western Blotting , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Celular , Imunoglobulina G/sangue , Imuno-Histoquímica , Interferon gama/metabolismo , Queratinócitos/imunologia , Camundongos , Pâncreas/enzimologia , Pâncreas/imunologia , Fosfopiruvato Hidratase/imunologia , Pele/citologia , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Regulação para CimaRESUMO
Alpha-enolase is a key glycolytic enzyme that plays a functional role in several physiological processes depending on the cellular localization. The enzyme is mainly localized in the cytoplasm whereas an alternative translated form, named MBP-1, is predominantly nuclear. The MBP-1 protein has been characterized as a c-Myc promoter binding protein that negatively controls transcription. In the present study, we identified the kelch protein NS1-BP as one of the alpha-enolase/MBP-1 partners by using a yeast two-hybrid screening. Although NS1-BP has been originally described as a protein mainly localized in the nucleus, we provide evidence that NS1-BP also interacts with actin in human cells, as reported for most kelch-containing proteins. Here we showed that alpha-enolase and MBP-1 associate with NS1-BP in vitro and in vivo by GST pull-down assays and coimmunoprecipitation experiments; subsequent immunofluorescent staining confirmed colocalization of the proteins within the cells. Furthermore, functional analyses performed by cotransfection assays revealed that NS1-BP enhances the inhibitory effect exerted by MBP-1 on c-Myc promoter. In mammalian cells, the overexpression of both proteins resulted in an increased repression of basal c-Myc transcription and consistently affected the steady state levels of endogenous c-Myc mRNA. These findings further support the distinct roles of alpha-enolase and its MBP-1 variant in maintaining cell homeostasis. Moreover, our data suggest a novel function for NS1-BP in the control of cell proliferation.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Actinas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/isolamento & purificação , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Proteínas de Ligação a RNA , Frações Subcelulares , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificaçãoRESUMO
Cell surface expression of alpha-enolase, a glycolytic enzyme displaying moonlighting activities, has been shown to contribute to the motility and invasiveness of cancer cells through the protein non-enzymatic function of binding plasminogen and enhancing plasmin formation. Although a few recent records indicate the involvement of protein partners in the localization of alpha-enolase to the plasma membrane, the cellular mechanisms underlying surface exposure remain largely elusive. Searching for novel interactors and signalling pathways, we used low-metastatic breast cancer cells, a doxorubicin-resistant counterpart and a non-tumourigenic mammary epithelial cell line. Here, we demonstrate by a combination of experimental approaches that epidermal growth factor (EGF) exposure, like lipopolysaccharide (LPS) exposure, promotes the surface expression of alpha-enolase. We also establish Heat shock protein 70 (Hsp70), a multifunctional chaperone distributed in intracellular, plasma membrane and extracellular compartments, as a novel alpha-enolase interactor and demonstrate a functional involvement of Hsp70 in the surface localization of alpha-enolase. Our results contribute to shedding light on the control of surface expression of alpha-enolase in non-tumourigenic and cancer cells and suggest novel targets to counteract the metastatic potential of tumours.
Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fosfopiruvato Hidratase/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Lipopolissacarídeos/imunologia , Fosfopiruvato Hidratase/genética , Ligação ProteicaRESUMO
Myc promoter-binding protein-1 (MBP-1) is a shorter protein variant of the glycolytic enzyme alpha-enolase. Although several lines of evidence indicate that MBP-1 acts as a tumor suppressor, the cellular mechanisms and signaling pathways underlying MBP-1 expression still remain largely elusive. To dissect these pathways, we used the SkBr3 breast cancer cell line and non-tumorigenic HEK293T cells ectopically overexpressing alpha-enolase/MBP-1. Here, we demonstrate that induced cell stresses promote MBP-1 expression through the AKT/PERK/eIF2α signaling axis. Our results contribute to shedding light on the molecular mechanisms underlying MBP-1 expression in non-tumorigenic and cancer cells.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Fosfopiruvato Hidratase/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismoRESUMO
BACKGROUND/AIM: Intraoperative electron radiation therapy (IOERT) is a therapeutic approach that delivers a single high dose of ionizing radiation (IR) directly to the tumor bed during cancer surgery. The main goal of IOERT is to counteract tumor growth by acting on residual cancer cells as well as to preserve healthy surrounding tissue from the side-effects of radiation therapy. The radiobiology of the healthy tissue response to IR is a topic of interest which may contribute to avoiding impairment of normal tissue and organ function and to reducing the risks of secondary cancer. The purpose of the study was to highlight cell and gene expression responses following IOERT treatment in the human non-tumorigenic MCF10A cell line in order to find new potential biomarkers of radiosensitivity/radioresistance. MATERIAL AND METHODS: Gene-expression profiling of MCF10A cells treated with 9 and 23 Gy doses (IOERT boost and exclusive treatment, respectively), was performed by whole-genome cDNA microarrays. Real-time quantitative reverse transcription (qRT-PCR), immunofluorescence and immunoblot experiments were carried out to validate candidate IOERT biomarkers. Clonogenic tests and morphological evaluations to examine cellular effects induced by radiation were also conducted. RESULTS: The study revealed a dose-dependent gene-expression profile and specific key genes that may be proposed as novel markers of radiosensitivity. Our results show consistent differences in non-tumorigenic cell tolerance and in the molecular response of MCF10A cells to different IOERTs. In particular, after 9 Gy of exposure, the selection of a radioresistant cell fraction was observed. CONCLUSION: The possibility of clarifying the molecular strategies adopted by cells in choosing between death or survival after IR-induced damage opens-up new avenues for the selection of a proper personalized therapy schedule.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Tolerância a Radiação/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta à Radiação , Elétrons , Feminino , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries , Proteínas de Neoplasias/biossíntese , Medicina de PrecisãoRESUMO
BACKGROUND: Alpha-enolase is a glycolytic enzyme that catalyses the formation of phosphoenolpyruvate in the cell cytoplasm. α-Enolase and the predominantly nuclear Myc promoter-binding protein-1 (MBP-1) originate from a single gene through the alternative use of translational starting sites. MBP-1 binds to the P2 c-myc promoter and competes with TATA-box binding protein (TBP) to suppress gene transcription. Although several studies have shown an antiproliferative effect of MBP-1 overexpression on several human cancer cells, to date detailed observations of α-enolase and MBP-1 relative expression in primary tumors versus normal tissues and their correlation with clinicopathological features have not been undertaken. METHODOLOGY AND FINDINGS: We analyzed α-enolase and MBP-1 expression in normal breast epithelium and primary invasive ductal breast carcinoma (IDC) from 177 patients by Western blot and immunohistochemical analyses, using highly specific anti-α-enolase monoclonal antibodies. A significant increase in the expression of cytoplasmic α-enolase was observed in 98% of the tumors analysed, compared to normal tissues. Nuclear MBP-1 was found in almost all the normal tissues while its expression was retained in only 35% of the tumors. Statistically significant associations were observed among the nuclear expression of MBP-1 and ErbB2 status, Ki-67 expression, node status and tumor grade. Furthermore MBP-1 expression was associated with good survival of patients with IDC. CONCLUSIONS: MBP-1 functions in repressing c-myc gene expression and the results presented indicate that the loss of nuclear MBP-1 expression in a large number of IDC may be a critical step in the development and progression of breast cancer and a predictor of adverse outcome. Nuclear MBP-1 appears to be a novel and valuable histochemical marker with potential prognostic value in breast cancer.
Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Carcinoma Ductal/diagnóstico , Carcinoma Ductal/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/enzimologia , Citoplasma/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Prognóstico , Transporte ProteicoRESUMO
The human PVT-1 gene is located on chromosome 8 telomeric to the c-Myc gene and it is frequently involved in the translocations occurring in variant Burkitt's lymphomas and murine plasmacytomas. It has been proposed that PVT-1 regulates c-Myc gene transcription over a long distance. To get new insights into the functional relationships between the two genes, we have investigated PVT-1 and c-Myc expression in normal human tissues and in transformed cells. Our findings indicate that PVT-1 expression is restricted to a relative low number of normal tissues compared to the wide distribution of c-Myc mRNA, whereas the gene is highly expressed in many transformed cell types including neuroblastoma cells that do not express c-Myc. Reporter gene assays were used to dissect the PVT-1 promoter and to identify the region responsible for the elevated expression observed in transformed cells. This region contains two putative binding sites for Myc proteins. The results of transfection experiments in RAT1-MycER cells and chromatin immunoprecipitation (ChIP) assays in proliferating and differentiated neuroblastoma cells indicate that PVT-1 is a downstream target of Myc proteins.