Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 58(11): 2294-2304, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30388003

RESUMO

We previously characterized the inhibitory activity of human salivary α-amylase (HSA) and Callosobruchus maculatus intestinal α-amylases by the plant lipid transfer protein from Vigna unguiculata ( Vu-LTP). Herein, we further study this inhibitory activity. First by an analysis of protein α-amylase inhibitors complexed with α-amylase, we find that positively charged amino acids of inhibitors interact with the active site of α-amylases and we know that Vu-LTP is rich in positively charged amino acid residues. For this reason, we model Vu-LTP, and based on its three-dimensional structure, we choose five peptides to be synthesized. Herein, we report that two peptides of Vu-LTP are responsible for HSA inhibition. A comparison of primary and tertiary structures of LTPs with and without inhibitory activity against α-amylase, superimposed with the sequence of Vu-LTP mapped for HSA inhibition, reinforces our suggestion that positively charged amino acids in loops are responsible for the inhibition. To prove our observation, one modified peptide is synthesized in which Arg39 is replaced by Gln. This modified peptide loses the HSA inhibitory property presented by the unmodified peptide. Therefore, we describe a new biological active for Vu-LTP, i.e. the α-amylase inhibitory activity that is not a fortuitous biological activity and probably has evolved to perform a biological function which is still unknown. A good candidate should be defense against insects. The results of this study also expand the possible biotechnological applications of LTPs.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Plantas/metabolismo , Vigna/metabolismo , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Proteínas de Transporte/química , Humanos , Modelos Moleculares , Proteínas de Plantas/química , Conformação Proteica , Alinhamento de Sequência , Vigna/química , alfa-Amilases/química
2.
Protein Expr Purif ; 132: 97-107, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28161544

RESUMO

Proteins extracted from Capsicum annuum L. fruits were initially subjected to reversed-phase chromatography on HPLC, resulting in eight peptide-rich fractions. All the fractions obtained were tested for their ability to inhibit porcine trypsin and amylase from both human saliva and from larval insect in vitro. All fractions were also tested for their ability to inhibit growth of the phytopathogenic fungi. Several fractions inhibited the activity of human salivary amylase and larval insect amylase, especially fraction Fa5. No fraction tested was found to inhibit trypsin activity, being Fa2 fraction an exception. Interestingly fraction Fa5 also displayed high antimicrobial activity against the species of the Fusarium genus. Fraction Fa5 was found to have two major protein bands of 17 and 6.5 kDa, and these were sequenced by mass spectrometry. Two peptides were obtained from the 6.5-kDa band, which showed similarity to antimicrobial peptides. Fraction Fa5 was also tested for its ability to permeabilize membranes and induce ROS. Fraction Fa5 was able to permeabilize the membranes of all the fungi tested. Fungi belonging to the genus Fusarium also showed an increase in the endogenous production of ROS when treated with this fraction. Antimicrobial peptides were also identified in the fruits from other Capsicum species.


Assuntos
Anti-Infecciosos , Capsicum/química , Inibidores Enzimáticos , Frutas/química , Fusarium/crescimento & desenvolvimento , Peptídeos , Proteínas de Plantas , alfa-Amilases/antagonistas & inibidores , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Humanos , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA