RESUMO
Cardiac function is under the control of the autonomic nervous system, composed by the parasympathetic and sympathetic divisions, which are finely tuned at different hierarchical levels. While a complex regulation occurs in the central nervous system involving the insular cortex, the amygdala and the hypothalamus, a local cardiac regulation also takes place within the heart, driven by an intracardiac nervous system. This complex system consists of a network of ganglionic plexuses and interconnecting ganglions and axons. Each ganglionic plexus contains numerous intracardiac ganglia that operate as local integration centres, modulating the intricate autonomic interactions between the extrinsic and intracardiac nervous systems. Herein, we summarize the current understanding on the intracardiac nervous system, and acknowledge its role in the pathophysiology of cardiovascular diseases.
Assuntos
Sistema Nervoso Autônomo/fisiologia , Cistos Glanglionares , Coração/inervação , Neurônios/fisiologia , Animais , Axônios/fisiologia , Coração/fisiologia , Humanos , Sistema Nervoso Parassimpático/fisiologiaRESUMO
BACKGROUND: Chronic stress is associated with increased risk of glucose intolerance and cardiovascular diseases, albeit through undefined mechanisms. With the aim of gaining insights into the latter, this study examined the metabolic profile of young adult male rats that were exposed to chronic unpredictable stress. METHODS: Young adult male rats were submitted to 4 weeks of chronic unpredictable stress and allowed to recover for 5 weeks. An extensive analysis including of morphologic, biochemical and molecular parameters was carried out both after chronic unpredictable stress and after recovery from stress. RESULTS: After 28 days of chronic unpredictable stress (CUS) the animals submitted to this protocol displayed less weight gain than control animals. After 5 weeks of recovery the weight gain rebounded to similar values of controls. In addition, following CUS, fasting insulin levels were increased and were accompanied by signs of impaired glucose tolerance and elevated serum corticosteroid levels. This biochemical profile persisted into the post-stress recovery period, despite the restoration of baseline corticosteroid levels. The mRNA expression levels of peroxisome proliferator-activated receptor (PPAR)-γ and lipocalin-2 in white adipose tissue were, respectively, down- and up-regulated. CONCLUSIONS: Reduction of PPAR-γ expression and generation of a pro-inflammatory environment by increased lipocalin-2 expression in white adipose tissue may contribute to stress-induced glucose intolerance.
Assuntos
Intolerância à Glucose/etiologia , Gordura Intra-Abdominal/metabolismo , PPAR gama/metabolismo , Estresse Psicológico/complicações , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Regulação para Baixo , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Intolerância à Glucose/fisiopatologia , Mediadores da Inflamação/metabolismo , Insulina/sangue , Lipocalina-2/genética , Lipocalina-2/metabolismo , Masculino , PPAR gama/genética , Fenótipo , Ratos Wistar , Transdução de Sinais , Estresse Psicológico/sangue , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Fatores de Tempo , Aumento de PesoRESUMO
AIMS: Takotsubo cardiomyopathy is an intriguing disease characterized by acute transient left ventricular dysfunction usually triggered by an episode of severe stress. The excessive levels of catecholamines and the overactivation of the sympathetic system are believed to be the main pathophysiologic mechanisms of Takotsubo cardiomyopathy, but it is unclear whether there is a structural or functional signature of the disease. In this sense, our aim was to characterize the central autonomic system response to autonomic challenges in patients with a previous episode of Takotsubo cardiomyopathy when compared with a control group of healthy volunteers. METHODS AND RESULTS: Functional magnetic resonance imaging (fMRI) was performed in four patients with a previous episode of Takotsubo cardiomyopathy (average age of 67 ± 12 years) and in eight healthy volunteers (average age of 66 ± 5 years) while being submitted to different autonomic challenges (cold exposure and Valsalva manoeuvre). The fMRI analysis revealed a significant variation of the blood oxygen level dependent signal triggered by the Valsalva manoeuvre in specific areas of the brain involved in the cortical control of the autonomic system and significant differences in the pattern of activation of the insular cortex, amygdala and the right hippocampus between patients with Takotsubo cardiomyopathy and controls, even though these regions did not present significant volumetric changes. CONCLUSION: The central autonomic response to autonomic challenges is altered in patients with Takotsubo cardiomyopathy, thus suggesting a dysregulation of the central autonomic nervous system network. Subsequent studies are needed to unveil whether these alterations are causal or predisposing factors to Takotsubo cardiomyopathy.
Assuntos
Doenças do Sistema Nervoso Autônomo/diagnóstico por imagem , Sistema Nervoso Autônomo/fisiopatologia , Cardiomiopatia de Takotsubo/fisiopatologia , Idoso , Temperatura Baixa , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Manobra de ValsalvaRESUMO
Background: Adult height, weight, and adiposity measures have been suggested by some studies to be predictors of depression, cognitive impairment, and dementia. However, the presence of confounding factors and the lack of a thorough neuropsychological evaluation in many of these studies have precluded a definitive conclusion about the influence of anthropometric measures in cognition and depression. In this study we aimed to assess the value of height, weight, and abdominal perimeter to predict cognitive impairment and depressive symptoms in aged individuals. Methods and Findings: Cross-sectional study performed between 2010 and 2012 in the Portuguese general community. A total of 1050 participants were included in the study and randomly selected from local area health authority registries. The cohort was representative of the general Portuguese population with respect to age (above 50 years of age) and gender. Cognitive function was assessed using a battery of tests grouped in two dimensions: general executive function and memory. Two-step hierarchical multiple linear regression models were conducted to determine the predictive value of anthropometric measures in cognitive performance and mood before and after correction for possible confounding factors (gender, age, school years, physical activity, alcohol consumption, and smoking habits). We found single associations of weight, height, body mass index, abdominal perimeter, and age with executive function, memory and depressive symptoms. However, when included in a predictive model adjusted for gender, age, school years, and lifestyle factors only height prevailed as a significant predictor of general executive function (ß = 0.139; p < 0.001) and memory (ß = 0.099; p < 0.05). No relation was found between mood and any of the anthropometric measures studied. Conclusions and Relevance: Height is an independent predictor of cognitive function in late-life and its effects on the general and executive function and memory are independent of age, weight, education level, gender, and lifestyle factors. Altogether, our data suggests that modulators of adult height during childhood may irreversibly contribute to cognitive function in adult life and that height should be used in models to predict cognitive performance.
RESUMO
The applicability of CMCht/PAMAM dendrimer nanoparticles for CNS applications was investigated. AFM and TEM observations revealed that the nanoparticles possessed a nanosphere-like shape with a size from 22.0 to 30.7 nm. The nanoparticles could be bound to fluorescent-probe FITC for tracing purposes. Post-natal hippocampal neurons and cortical glial cells were both able to internalize the FITC-labeled CMCht/PAMAM dendrimer nanoparticles with high efficiency. The percentage of positive cells internalizing the nanoparticles varied, reaching a peak after 48 h of incubation. Further experiments for periods up to 7 d revealed that the periodical addition of FITC-labelled CMCht/PAMAM dendrimer nanoparticles was needed to maintain the overall percentage of cells internalizing them. Finally, it was also observed that cell viability was not significantly affected by the incubation of dendrimer nanoparticles.