Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 319(1): H89-H99, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502376

RESUMO

Mitochondrial dysfunction occurs in most forms of heart failure. We have previously reported that Tead1, the transcriptional effector of Hippo pathway, is critical for maintaining adult cardiomyocyte function, and its deletion in adult heart results in lethal acute dilated cardiomyopathy. Growing lines of evidence indicate that Hippo pathway plays a role in regulating mitochondrial function, although its role in cardiomyocytes is unknown. Here, we show that Tead1 plays a critical role in regulating mitochondrial OXPHOS in cardiomyocytes. Assessment of mitochondrial bioenergetics in isolated mitochondria from adult hearts showed that loss of Tead1 led to a significant decrease in respiratory rates, with both palmitoylcarnitine and pyruvate/malate substrates, and was associated with reduced electron transport chain complex I activity and expression. Transcriptomic analysis from Tead1-knockout myocardium revealed genes encoding oxidative phosphorylation, TCA cycle, and fatty acid oxidation proteins as the top differentially enriched gene sets. Ex vivo loss of function of Tead1 in primary cardiomyocytes also showed diminished aerobic respiration and maximal mitochondrial oxygen consumption capacity, demonstrating that Tead1 regulation of OXPHOS in cardiomyocytes is cell autonomous. Taken together, our data demonstrate that Tead1 is a crucial transcriptional node that is a cell-autonomous regulator, a large network of mitochondrial function and biogenesis related genes essential for maintaining mitochondrial function and adult cardiomyocyte homeostasis.NEW & NOTEWORTHY Mitochondrial dysfunction constitutes an important aspect of heart failure etiopathogenesis and progression. However, the molecular mechanisms are still largely unknown. Growing lines of evidence indicate that Hippo-Tead pathway plays a role in cellular bioenergetics. This study reveals the novel role of Tead1, the downstream transcriptional effector of Hippo pathway, as a novel regulator of mitochondrial oxidative phosphorylation and in vivo cardiomyocyte energy metabolism, thus providing a potential therapeutic target for modulating mitochondrial function and enhancing cytoprotection of cardiomyocytes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo , Animais , Respiração Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Transcriptoma
2.
Cells ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38994961

RESUMO

Cytokine-induced ß-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect ß-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on ß-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected ß-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced ß-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in ß-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for ß-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting ß-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving ß-cell functional mass in T1D.


Assuntos
Apoptose , Citocinas , Células Secretoras de Insulina , NF-kappa B , Transdução de Sinais , Animais , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , NF-kappa B/metabolismo , Camundongos , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Proteína Forkhead Box O1/metabolismo , Camundongos Endogâmicos NOD , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA