Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Transl Med ; 22(1): 77, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243248

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) depression substantially contributes to diastolic dysfunction in heart failure (HF), suggesting that SERCA2a stimulation may be a mechanism-based HF therapy. Istaroxime is a drug endowed with both a SERCA2a stimulatory activity and a Na+/K+ pump inhibitory activity for acute HF treatment. Its main metabolite PST3093 shows a more favorable therapeutic profile as compared to the parent drug, but it is still unsuitable for chronic usage. Novel PST3093 derivatives have been recently developed for oral (chronic) HF treatment; compound 8 was selected among them and here characterized. METHODS: Effects of compound 8 were evaluated in a context of SERCA2a depression, by using streptozotocin-treated rats, a well-known model of diastolic dysfunction. The impact of SERCA2a stimulation by compound 8 was assessed at the cellular level ad in vivo, following i.v. infusion (acute effects) or oral administration (chronic effects). RESULTS: As expected from SERCA2a stimulation, compound 8 induced SR Ca2+ compartmentalization in STZ myocytes. In-vivo echocardiographic analysis during i.v. infusion and after repeated oral administration of compound 8, detected a significant improvement of diastolic function. Moreover, compound 8 did not affect electrical activity of healthy guinea-pig myocytes, in line with the absence of off-target effects. Finally, compound 8 was well tolerated in mice with no evidence of acute toxicity. CONCLUSIONS: The pharmacological evaluation of compound 8 indicates that it may be a safe and selective drug for a mechanism-based treatment of chronic HF by restoring SERCA2a activity.


Assuntos
Etiocolanolona/análogos & derivados , Insuficiência Cardíaca , Ratos , Camundongos , Animais , Cobaias , Insuficiência Cardíaca/metabolismo , Doença Crônica , Inibidores Enzimáticos , Cardiotônicos/uso terapêutico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
2.
J Pharmacol Exp Ther ; 384(1): 231-244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153005

RESUMO

Heart failure (HF) therapeutic toolkit would strongly benefit from the availability of ino-lusitropic agents with a favorable pharmacodynamics and safety profile. Istaroxime is a promising agent, which combines Na+/K+ pump inhibition with sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) stimulation; however, it has a very short half-life and extensive metabolism to a molecule named PST3093. The present work aims to investigate whether PST3093 still retains the pharmacodynamic and pharmacokinetic properties of its parent compound. We studied PST3093 for its effects on SERCA2a and Na+/K+ ATPase activities, Ca2+ dynamics in isolated myocytes, and hemodynamic effects in an in vivo rat model of diabetic [streptozotocin (STZ)-induced] cardiomyopathy. Istaroxime infusion in HF patients led to accumulation of PST3093 in the plasma; clearance was substantially slower for PST3093 than for istaroxime. In cardiac rat preparations, PST3093 did not inhibit the Na+/K+ ATPase activity but retained SERCA2a stimulatory activity. In in vivo echocardiographic assessment, PST3093 improved overall cardiac performance and reversed most STZ-induced abnormalities. PST3093 intravenous toxicity was considerably lower than that of istaroxime, and it failed to significantly interact with 50 off-targets. Overall, PST3093 is a "selective" SERCA2a activator, the prototype of a novel pharmacodynamic category with a potential in the ino-lusitropic approach to HF with prevailing diastolic dysfunction. Its pharmacodynamics are peculiar, and its pharmacokinetics are suitable to prolong the cardiac beneficial effect of istaroxime infusion. SIGNIFICANCE STATEMENT: Heart failure (HF) treatment would benefit from the availability of ino-lusitropic agents with favourable profiles. PST3093 is the main metabolite of istaroxime, a promising agent combining Na+/K+ pump inhibition and sarcoplasmic reticulum Ca2+ ATPase2a (SERCA2a) stimulation. PST3093 shows a longer half-life in human circulation compared to istaroxime, selectively activates SERCA2a, and improves cardiac performance in a model of diabetic cardiomyopathy. Overall, PST3093 as a selective SERCA2a activator can be considered the prototype of a novel pharmacodynamic category for HF treatment.


Assuntos
Insuficiência Cardíaca , Coração , Animais , Humanos , Ratos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Etiocolanolona/farmacologia , Etiocolanolona/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico
3.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902427

RESUMO

Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment, to then review and discuss the current advances in the discovery of microbiota-derived natural compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward the production of those identified microbial metabolites capable of suppressing CSC properties, is a promising approach to support standard chemotherapy.


Assuntos
Produtos Biológicos , Microbiota , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Produtos Biológicos/farmacologia , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362234

RESUMO

Macrophages are among the first immune cells involved in the initiation of the inflammatory response to protect the host from pathogens. THP-1 derived macrophages (TDM) are used as a model to study the pro-inflammatory effects of lipopolysaccharide (LPS) exposure. Intact TDM cells were analysed by Fourier transform infrared (FTIR) microspectroscopy, supported by multivariate analysis, to obtain a snapshot of the molecular events sparked by LPS stimulation in macrophage-like cells. This spectroscopic analysis enabled the untargeted identification of the most significant spectral components affected by the treatment, ascribable mainly to lipid, protein, and sulfated sugar bands, thus stressing the fundamental role of these classes of molecules in inflammation and in immune response. Our study, therefore, shows that FTIR microspectroscopy enabled the identification of spectroscopic markers of LPS stimulation and has the potential to become a tool to assess those global biochemical changes related to inflammatory and anti-inflammatory stimuli of synthetic and natural immunomodulators different from LPS.


Assuntos
Lipopolissacarídeos , Macrófagos , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Análise de Fourier , Macrófagos/metabolismo , Células THP-1 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
J Immunol ; 201(5): 1510-1521, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037846

RESUMO

Cell metabolism now appears as an essential regulator of immune cells activation. In particular, TLR stimulation triggers metabolic reprogramming of dendritic cells (DCs) with an increased glycolytic flux, whereas inhibition of glycolysis alters their functional activation. The molecular mechanisms involved in the control of glycolysis upon TLR stimulation are poorly understood for human DCs. TLR4 activation of human monocyte-derived DCs (MoDCs) stimulated glycolysis with an increased glucose consumption and lactate production. Global hexokinase (HK) activity, controlling the initial rate-limiting step of glycolysis, was also increased. TLR4-induced glycolytic burst correlated with a differential modulation of HK isoenzymes. LPS strongly enhanced the expression of HK2, whereas HK3 was reduced, HK1 remained unchanged, and HK4 was not expressed. Expression of the other rate-limiting glycolytic enzymes was not significantly increased. Exploring the signaling pathways involved in LPS-induced glycolysis with various specific inhibitors, we observed that only the inhibitors of p38-MAPK (SB203580) and of HIF-1α DNA binding (echinomycin) reduced both the glycolytic activity and production of cytokines triggered by TLR4 stimulation. In addition, LPS-induced HK2 expression required p38-MAPK-dependent HIF-1α accumulation and transcriptional activity. TLR1/2 and TLR2/6 stimulation increased glucose consumption by MoDCs through alternate mechanisms that are independent of p38-MAPK activation. TBK1 contributed to glycolysis regulation when DCs were stimulated via TLR2/6. Therefore, our results indicate that TLR4-dependent upregulation of glycolysis in human MoDCs involves a p38-MAPK-dependent HIF-1α accumulation, leading to an increased HK activity supported by enhanced HK2 expression.


Assuntos
Células Dendríticas/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Hexoquinase/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Monócitos/imunologia , Receptor 4 Toll-Like/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Células Cultivadas , Células Dendríticas/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Monócitos/patologia , Estabilidade Proteica , Receptor 4 Toll-Like/agonistas
6.
Eur J Clin Pharmacol ; 76(3): 409-418, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31982922

RESUMO

PURPOSE: The partial ineffectiveness and side effects of inflammatory bowel disease (IBD) current therapies drive basic research to look for new therapeutic target in order to develop new drug lead. Considering the pivotal role played by toll-like receptors (TLRs) in gut inflammation, we evaluate here the therapeutic effect of the synthetic glycolipid TLR4 antagonist FP7. METHODS: The anti-inflammatory effect of FP7, active as TLR4 antagonist, was evaluated on peripheral blood mononuclear cells (PBMCs) and lamina propria mononuclear cells (LPMCs) isolated from IBD patients, and in a mouse model of ulcerative colitis. RESULTS: FP7 strongly reduced the inflammatory responses induced by lipopolysaccharide (LPS) in vitro, due to its capacity to compete with LPS for the binding of TLR4/MD-2 receptor complex thus inhibiting both the MyD88- and TRIF-dependent inflammatory pathways. Colitic mice treated with FP7 exhibit reduced colonic inflammation and decreased levels of pro-inflammatory cytokines. CONCLUSIONS: This study suggests that TLR4 chemical modulation can be an effective therapeutic approach to IBD. The selectivity of FP7 on TLR4 makes this molecule a promising drug lead for new small molecules-based treatments.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Glicolipídeos/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Adulto , Animais , Células Cultivadas , Colite Ulcerativa/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
7.
Bioconjug Chem ; 30(6): 1649-1657, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31136151

RESUMO

Endotoxin (lipooligosaccharide, LOS, and lipopolysaccharide, LPS) is the major molecular component of Gram-negative bacteria outer membrane, and very potent pro-inflammatory substance. Visualizing and tracking the distribution of the circulating endotoxin is one of the fundamental approaches to understand the molecular aspects of infection with subsequent inflammatory and immune responses, LPS also being a key player in the molecular dialogue between microbiota and host. While fluorescently labeled LPS has previously been used to track its subcellular localization and colocalization with TLR4 receptor and downstream effectors, our knowledge on lipopolysaccharide (LOS) localization and cellular activity remains almost unexplored. In this study, LOS was labeled with a novel fluorophore, Cy7N, featuring a large Stokes-shifted emission in the deep-red spectrum resulting in lower light scattering and better imaging contrast. The LOS-Cy7N chemical identity was determined by mass spectrometry, and immunoreactivity of the conjugate was evaluated. Interestingly, its application to microscopic imaging showed a faster cell internalization compared to LPS-Alexa488, despite that it is also CD14-dependent and undergoes the same endocytic pathway as LPS toward lysosomal detoxification. Our results suggest the use of the new infrared fluorophore Cy7N for cell imaging of labeled LOS by confocal fluorescence microscopy, and propose that LOS is imported in the cells by mechanisms different from those responsible for LPS uptake.


Assuntos
Bactérias/metabolismo , Carbocianinas/química , Lipopolissacarídeos/síntese química , Microscopia/métodos , Endocitose , Corantes Fluorescentes/química , Técnicas In Vitro , Receptor 4 Toll-Like/metabolismo
8.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099761

RESUMO

The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal's immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)2, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , Lipopolissacarídeos/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Animais , Bactérias/química , Infecções Bacterianas/microbiologia , Humanos , Imunidade Inata , Lipopolissacarídeos/análise , Antígeno 96 de Linfócito/análise , Antígeno 96 de Linfócito/imunologia , Modelos Moleculares , Receptor 4 Toll-Like/análise
9.
Pharmacol Res ; 103: 180-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26640075

RESUMO

Increasing evidence indicates that inflammatory responses could play a critical role in the pathogenesis of motor neuron injury in amyotrophic lateral sclerosis (ALS). Recent findings have underlined the role of Toll-like receptors (TLRs) and the involvement of both the innate and adaptive immune responses in ALS pathogenesis. In particular, abnormal TLR4 signaling in pro-inflammatory microglia cells has been related to motoneuron degeneration leading to ALS. In this study the effect of small molecule TLR4 antagonists on in vitro ALS models has been investigated. Two different types of synthetic glycolipids and the phenol fraction extracted from commercial extra-virgin olive oil (EVOO) were selected since they efficiently inhibit TLR4 stimulus in HEK cells by interacting with the TLR4·MD-2 complex and CD14 co-receptor. Here, TLR4 antagonists efficiently protected motoneurons from LPS-induced lethality in spinal cord cultures, and inhibited the interleukine-1ß production by LPS-stimulated microglia. In motoneurons/glia cocultures obtained from wild type or SOD1 G93A mice, motoneuron death induced by SOD1mut glia was counteracted by TLR4 antagonists. The release of nitric oxide by LPS treatment or SOD1mut glia was also inhibited by EVOO, suggesting that the action of this natural extract could be mainly related to the modulation of this inflammatory mediator.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/efeitos dos fármacos , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Células HEK293 , Humanos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Medula Espinal/metabolismo , Superóxido Dismutase/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
10.
Chemistry ; 21(2): 500-19, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25353096

RESUMO

In many Gram-negative bacteria, lipopolysaccharide (LPS) and its lipid A moiety are pivotal for bacterial survival. Depending on its structure, lipid A carries the toxic properties of the LPS and acts as a potent elicitor of the host innate immune system via the Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) receptor complex. It often causes a wide variety of biological effects ranging from a remarkable enhancement of the resistance to the infection to an uncontrolled and massive immune response resulting in sepsis and septic shock. Since the bioactivity of lipid A is strongly influenced by its primary structure, a broad range of chemical syntheses of lipid A derivatives have made an enormous contribution to the characterization of lipid A bioactivity, providing novel pharmacological targets for the development of new biomedical therapies. Here, we describe and discuss the chemical aspects regarding lipid A and its role in innate immunity, from the (bio)synthesis, isolation and characterization to the molecular recognition at the atomic level.


Assuntos
Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Inata , Lipídeo A/química , Lipídeo A/imunologia , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Lipídeo A/análogos & derivados , Antígeno 96 de Linfócito/imunologia , Modelos Moleculares , Receptor 4 Toll-Like/imunologia
11.
Chembiochem ; 15(5): 734-42, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24677607

RESUMO

Lipopolysaccharide (LPS), the main cell-surface molecular constituent of Gram-negative bacteria, is synthesized in the inner membrane (IM) and transported to the outer membrane (OM) by the Lpt (lipopolysaccharide transport) machinery. Neosynthesized LPS is first flipped by MsbA across the IM, then transported to the OM by seven Lpt proteins located in the IM (LptBCFG), in the periplasm (LptA), and in the OM (LptDE). A functional OM is essential to bacterial viability and requires correct placement of LPS in the outer leaflet. Therefore, LPS biogenesis represents an ideal target for the development of novel antibiotics against Gram-negative bacteria. Although the structures of Lpt proteins have been elucidated, little is known about the mechanism of LPS transport, and few data are available on Lpt­LPS binding. We report here the first determination of the thermodynamic and kinetic parameters of the interaction between LptC and a fluorescent lipo-oligosaccharide (fLOS) in vitro. The apparent dissociation constant (Kd) of the fLOS­LptC interaction was evaluated by two independent methods. The first was based on fLOS capture by resin-immobilized LptC; the second used quenching of LptC intrinsic fluorescence by fLOS in solution. The Kd values by the two methods (71.4 and 28.8 µm, respectively) are very similar, and are of the same order of magnitude as that of the affinity of LOS for the upstream transporter, MsbA. Interestingly, both methods showed that fLOS binding to LptC is mostly irreversible, thus reflecting the fact that LPS can be released from LptC only when energy is supplied by ATP or in the presence of a higher-affinity LptA protein. A fluorescent glycolipid was synthesized: this also interacted irreversibly with LptC, but with lower affinity (apparent Kd=221 µM). This compound binds LptC at the LPS binding site and is a prototype for the development of new antibiotics targeting LPS transport in Gram-negative bacteria.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo , Transporte Biológico , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescência , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Lipopolissacarídeos/química , Proteínas de Membrana/química , Modelos Moleculares , Oligossacarídeos/química
12.
Chembiochem ; 15(2): 250-8, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24339336

RESUMO

Monosaccharide lipid A mimetics based on a glucosamine core linked to two fatty acid chains and bearing one or two phosphate groups have been synthesized. Compounds 1 and 2, each with one phosphate group, were practically inactive in inhibiting LPS-induced TLR4 signaling and cytokine production in HEK-blue cells and murine macrophages, but compound 3, with two phosphate groups, was found to be active in efficiently inhibiting TLR4 signal in both cell types. The direct interaction between compound 3 and the MD-2 coreceptor was investigated by NMR spectroscopy and molecular modeling/docking analysis. This compound also interacts directly with the CD14 receptor, stimulating its internalization by endocytosis. Experiments on macrophages show that the effect on CD14 reinforces the activity on MD-2·TLR4 because compound 3's activity is higher when CD14 is important for TLR4 signaling (i.e., at low LPS concentration). The dual targeting of MD-2 and CD14, accompanied by good solubility in water and lack of toxicity, suggests the use of monosaccharide 3 as a lead compound for the development of drugs directed against TLR4-related syndromes.


Assuntos
Materiais Biomiméticos/farmacologia , Lipídeo A/química , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/metabolismo , Monossacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Antígeno 96 de Linfócito/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monossacarídeos/química , Monossacarídeos/metabolismo , NF-kappa B/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
13.
PLoS Pathog ; 8(3): e1002576, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412376

RESUMO

4-anilino quinazolines have been identified as inhibitors of HCV replication. The target of this class of compounds was proposed to be the viral protein NS5A, although unequivocal proof has never been presented. A 4-anilino quinazoline moiety is often found in kinase inhibitors, leading us to formulate the hypothesis that the anti-HCV activity displayed by these compounds might be due to inhibition of a cellular kinase. Type III phosphatidylinositol 4-kinase α (PI4KIIIα) has recently been identified as a host factor for HCV replication. We therefore evaluated AL-9, a compound prototypical of the 4-anilino quinazoline class, on selected phosphatidylinositol kinases. AL-9 inhibited purified PI4KIIIα and, to a lesser extent, PI4KIIIß. In Huh7.5 cells, PI4KIIIα is responsible for the phosphatidylinositol-4 phosphate (PI4P) pool present in the plasma membrane. Accordingly, we observed a gradual decrease of PI4P in the plasma membrane upon incubation with AL-9, indicating that this agent inhibits PI4KIIIα also in living cells. Conversely, AL-9 did not affect the level of PI4P in the Golgi membrane, suggesting that the PI4KIIIß isoform was not significantly inhibited under our experimental conditions. Incubation of cells expressing HCV proteins with AL-9 induced abnormally large clusters of NS5A, a phenomenon previously observed upon silencing PI4KIIIα by RNA interference. In light of our findings, we propose that the antiviral effect of 4-anilino quinazoline compounds is mediated by the inhibition of PI4KIIIα and the consequent depletion of PI4P required for the HCV membranous web. In addition, we noted that HCV has a profound effect on cellular PI4P distribution, causing significant enrichment of PI4P in the HCV-membranous web and a concomitant depletion of PI4P in the plasma membrane. This observation implies that HCV--by recruiting PI4KIIIα in the RNA replication complex--hijacks PI4P metabolism, ultimately resulting in a markedly altered subcellular distribution of the PI4KIIIα product.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/química , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Hepacivirus/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Quinazolinas/farmacologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
14.
Chem Soc Rev ; 42(11): 4543-56, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23250562

RESUMO

Are there general rules to obtain efficient immunization against carbohydrate antigens? Thanks to technological advances in glycobiology and glycochemistry we entered a new era in which the rational design of carbohydrate vaccines has become an achievable goal. The aim of this Tutorial Review is to present the most recent accomplishments in the field of semi and fully synthetic carbohydrate vaccines against viruses, bacteria and cancer. It is also pointed out that the understanding of the chemical and biochemical processes related to immunization allows the modern chemist to rationally design carbohydrate vaccines with improved efficiency.


Assuntos
Carboidratos/química , Vacinas Sintéticas/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Carboidratos/imunologia , Dendrímeros/química , Dendrímeros/metabolismo , Epitopos/imunologia , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/imunologia , Peptídeos Cíclicos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/química
15.
Chem Soc Rev ; 42(11): 4709-27, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23254759

RESUMO

Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.


Assuntos
Glicoconjugados/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Aderência Bacteriana , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Galectinas/química , Galectinas/metabolismo , Glicoconjugados/imunologia , Glicoconjugados/farmacologia , HIV/fisiologia , Humanos , Imunidade Inata , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Nanopartículas/química , Internalização do Vírus/efeitos dos fármacos
16.
Beilstein J Org Chem ; 10: 1672-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161726

RESUMO

Four novel calix[4]arene-based glycoclusters were synthesized by conjugating the saccharide units to the macrocyclic scaffold using the CuAAC reaction and using long and hydrophilic ethylene glycol spacers. Initially, two galactosylcalix[4]arenes were prepared starting from saccharide units and calixarene cores which differ in the relative dispositions of the alkyne and azido groups. Once the most convenient synthetic pathway was selected, two further lactosylcalix[4]arenes were obtained, one in the cone, the other one in the 1,3-alternate structure. Preliminary studies of the interactions of these novel glycocalixarenes with galectin-3 were carried out by using a lectin-functionalized chip and surface plasmon resonance. These studies indicate a higher affinity of lactosyl- over galactosylcalixarenes. Furthermore, we confirmed that in case of this specific lectin binding the presentation of lactose units on a cone calixarene is highly preferred with respect to its isomeric form in the 1,3-alternate structure.

17.
Talanta ; 275: 126104, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677166

RESUMO

In this work, we present the potential of Fourier transform infrared (FTIR) microspectroscopy to compare on whole cells, in an unbiased and untargeted way, the capacity of bacterial lipopolysaccharide (LPS) and two rationally designed molecules (FP20 and FP20Rha) to activate molecular circuits of innate immunity. These compounds are important drug hits in the development of vaccine adjuvants and tumor immunotherapeutics. The biological assays indicated that FP20Rha was more potent than FP20 in inducing cytokine production in cells and in stimulating IgG antibody production post-vaccination in mice. Accordingly, the overall significant IR spectral changes induced by the treatment with LPS and FP20Rha were similar, lipids and glycans signals being the most diagnostic, while the effect of the less potent molecule FP20 on cells resulted to be closer to control untreated cells. We propose here the use of FTIR spectroscopy supported by artificial intelligence (AI) to achieve a more holistic understanding of the cell response to new drug candidates while screening them in cells.


Assuntos
Lipopolissacarídeos , Aprendizado de Máquina , Receptor 4 Toll-Like , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/metabolismo , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Camundongos , Lipopolissacarídeos/farmacologia , Humanos , Desenho de Fármacos , Células RAW 264.7
18.
Cell Death Discov ; 10(1): 24, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216593

RESUMO

Modeling human neuronal properties in physiological and pathological conditions is essential to identify novel potential drugs and to explore pathological mechanisms of neurological diseases. For this purpose, we generated a three-dimensional (3D) neuronal culture, by employing the readily available human neuroblastoma SH-SY5Y cell line, and a new differentiation protocol. The entire differentiation process occurred in a matrix and lasted 47 days, with 7 days of pre-differentiation phase and 40 days of differentiation, and allowed the development of a 3D culture in conditions consistent with the physiological environment. Neurons in the culture were electrically active, were able to establish functional networks, and showed features of cholinergic neurons. Hence here we provide an easily accessible, reproducible, and suitable culture method that might empower studies on synaptic function, vesicle trafficking, and metabolism, which sustain neuronal activity and cerebral circuits. Moreover, this novel differentiation protocol could represent a promising cellular tool to study physiological cellular processes, such as migration, differentiation, maturation, and to develop novel therapeutic approaches.

19.
J Med Chem ; 67(7): 5603-5616, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513080

RESUMO

Vaccines are one of the greatest achievements of modern medicine. Due to their safer profile, the latest investigations usually focus on subunit vaccines. However, the active component often needs to be coupled with an adjuvant to be effective and properly trigger an immune response. We are developing a new synthetic monosaccharide-based TLR4 agonist, such as glucosamine-derived compounds FP18 and FP20, as a potential vaccine adjuvant. In this study, we present a new FP20 derivative, FP20Hmp, with a hydroxylated ester linked to the glucosamine core. We show that the modification introduced improves the activity of the adjuvant and its solubility. This study presents the synthesis of FP20Hmp, its in vitro characterization, and in vivo activity while coupled with the ovalbumin antigen or in formulation with an enterococcal antigen. We show that FP20Hmp enables increased production of antigen-specific antibodies that bind to the whole bacterium.


Assuntos
Adjuvantes de Vacinas , Enterococcus faecium , Receptor 4 Toll-Like , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Vacinas de Subunidades Antigênicas , Glucosamina
20.
Front Chem ; 11: 1252996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025058

RESUMO

We developed synthetic glycophospholipids based on a glucosamine core (FP compounds) with potent and selective activity in stimulating Toll-Like Receptor 4 (TLR4) as agonists. These compounds have activity and toxicity profiles similar to the clinically approved adjuvant monophosphoryl lipid A (MPLA), included in several vaccine formulations, and are now in the preclinical phase of development as vaccine adjuvants in collaboration with Croda International PLC. FP compound synthesis is shorter and less expensive than MPLA preparation but presents challenges due to the use of toxic solvents and hazardous intermediates. In this paper we describe the optimization of FP compound synthesis. The use of regio- and chemoselective reactions allowed us to reduce the number of synthesis steps and improve process scalability, overall yield, safety, and Process Mass Intensity (PMI), thus paving the way to the industrial scale-up of the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA