Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Crit Rev Food Sci Nutr ; 59(21): 3498-3510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29999424

RESUMO

Vitamin A deficiency (VAD) is one of the most prevalent micronutrient deficiencies that disproportionately affects low income populations in developing countries. Traditional breeding and modern biotechnology have significant potential to enhance micronutrient bioavailability in crops through biofortification. Bananas (Musa spp.) are economically important fruit crops grown throughout tropical and sub-tropical regions of the world where VAD is most prevalent. Some banana genotypes are rich in provitamin A carotenoids (pVACs), providing an opportunity to use bananas as a readily available vehicle for provitamin A delivery. This review summarizes the progress made in carotenoid research in bananas relative to banana diversity and the use of conventional breeding and transgenic approaches aimed at banana biofortification to address vitamin A deficiency. Existing reports on sampling strategies, pVAC retention and bioavailability are also evaluated as essential components for a successful banana biofortification effort. The wide variability of pVACs reported in banana cultivars coupled with recent advances in unraveling the diversity and genetic improvement of this globally important but often-neglected staple fruit crop underscores their importance in biofortification schemes.


Assuntos
Biofortificação , Musa , Deficiência de Vitamina A/prevenção & controle , Vitamina A , Humanos , Provitaminas
2.
J Nutr ; 146(8): 1483-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27358411

RESUMO

BACKGROUND: High-fat (HF) diet-induced obesity is associated with changes in the gut microbiota. Fiber and other bioactive compounds in plant-based foods are suggested to prevent gut dysbiosis brought on by HF feeding. Mango is high in fiber and has been reported to have anti-obesogenic, hypoglycemic, and immunomodulatory properties. OBJECTIVES: We investigated the effects of freeze-dried mango pulp combined with an HF diet on the cecal microbial population and its relation to body composition, lipids, glucose parameters, short-chain fatty acid (SCFA) production, and gut inflammatory markers in a mouse model of diet-induced obesity. METHODS: Six-wk-old male C57BL/6 mice were randomly assigned to 1 of 4 dietary treatment groups: control (AIN-93M, 10% fat kcal), HF (60% fat kcal), and HF + 1% or 10% mango (HF+1%M or HF+10%M, wt:wt) for 12 wk. The cecal microbial population was assessed by use of 16S rDNA sequencing. Body composition, plasma glucose and lipids, cecal and fecal SCFAs, and mRNA abundance of inflammatory markers in the ileum and colonic lamina propria were assessed. RESULTS: Compared with the control group, HF feeding significantly reduced (P < 0.05) 1 operational taxonomic unit (OTU) of the genus Bifidobacteria (64-fold) and 5 OTUs of the genus Akkermansia (≥16-fold). This reduction was prevented in the HF+10%M group, members of which had 10% higher final body weight compared with the HF group (P = 0.01) and similar fasting blood glucose concentrations (P = 0.24). The HF+10%M group had 135% (P = 0.004) and 133% (P < 0.0001) greater fecal acetic and n-butyric acids concentrations than the HF group, suggesting greater microbial fermentation. Furthermore, a 59% greater colonic interleukin 10 (Il10) gene expression was observed in the HF+10%M group than in the HF group (P = 0.048), indicating modulation of gut inflammation. The HF+1%M group generally did not differ from the HF group. CONCLUSIONS: The addition of mango to an HF diet modulated the gut microbiota and production of SCFAs in C57BL/6 mice; these changes may improve gut tolerance to the insult of an HF diet.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Disbiose/tratamento farmacológico , Ácidos Graxos Voláteis/metabolismo , Intestino Grosso/efeitos dos fármacos , Mangifera , Obesidade/complicações , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Disbiose/microbiologia , Frutas , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Obesidade/patologia , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , RNA Mensageiro/metabolismo , Redução de Peso
3.
Food Funct ; 15(7): 3433-3445, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38436090

RESUMO

Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.


Assuntos
Musa , Musa/genética , Carotenoides , Biofortificação , Frutas/genética , Genótipo , Etilenos , Proteínas de Plantas/genética
4.
Sci Rep ; 13(1): 11605, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463972

RESUMO

Papain (aka C1A) family proteases, including bromelain enzymes, are widespread across the plant kingdom and play critical regulatory functions in protein turnover during development. The proteolytic activity exhibited by papain family proteases has led to their increased usage for a wide range of cosmetic, therapeutic, and medicinal purposes. Bromelain enzymes, or bromelains in short, are members of the papain family that are specific to the bromeliad plant family. The only major commercial extraction source of bromelain is pineapple. The importance of C1A family and bromelain subfamily proteases in pineapple development and their increasing economic importance led several researchers to utilize available genomic resources to identify protease-encoding genes in the pineapple genome. To date, studies are lacking in screening bromelain genes for targeted use in applied science studies. In addition, the bromelain genes coding for the enzymes present in commercially available bromelain products have not been identified and their evolutionary origin has remained unclear. Here, using the newly developed MD2 v2 pineapple genome, we aimed to identify bromelain-encoding genes and elucidate their evolutionary origin. Orthologous and phylogenetic analyses of all papain-family proteases encoded in the pineapple genome revealed a single orthogroup (189) and phylogenetic clade (XIII) containing the bromelain subfamily. Duplication mode and synteny analyses provided insight into the origin and expansion of the bromelain subfamily in pineapple. Proteomic analysis identified four bromelain enzymes present in two commercially available bromelain products derived from pineapple stem, corresponding to products of four putative bromelain genes. Gene expression analysis using publicly available transcriptome data showed that 31 papain-family genes identified in this study were up-regulated in specific tissues, including stem, fruit, and floral tissues. Some of these genes had higher expression in earlier developmental stages of different tissues. Similar expression patterns were identified by RT-qPCR analysis with leaf, stem, and fruit. Our results provide a strong foundation for future applicable studies on bromelain, such as transgenic approaches to increase bromelain content in pineapple, development of bromelain-producing bioreactors, and studies that aim to determine the medicinal and/or therapeutic viability of individual bromelain enzymes.


Assuntos
Ananas , Bromelaínas , Bromelaínas/genética , Bromelaínas/metabolismo , Ananas/genética , Ananas/metabolismo , Papaína , Filogenia , Proteômica
5.
Sci Rep ; 13(1): 18890, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919298

RESUMO

Pineapple originates from tropical regions in South America and is therefore significantly impacted by cold stress. Periodic cold events in the equatorial regions where pineapple is grown may induce early flowering, also known as precocious flowering, resulting in monetary losses due to small fruit size and the need to make multiple passes for harvesting a single field. Currently, pineapple is one of the most important tropical fruits in the world in terms of consumption, and production losses caused by weather can have major impacts on worldwide exportation potential and economics. To further our understanding of and identify mechanisms for low-temperature tolerance in pineapple, and to identify the relationship between low-temperature stress and flowering time, we report here a transcriptomic analysis of two pineapple genotypes in response to low-temperature stress. Using meristem tissue collected from precocious flowering-susceptible MD2 and precocious flowering-tolerant Dole-17, we performed pairwise comparisons and weighted gene co-expression network analysis (WGCNA) to identify cold stress, genotype, and floral organ development-specific modules. Dole-17 had a greater increase in expression of genes that confer cold tolerance. The results suggested that low temperature stress in Dole-17 plants induces transcriptional changes to adapt and maintain homeostasis. Comparative transcriptomic analysis revealed differences in cuticular wax biosynthesis, carbohydrate accumulation, and vernalization-related gene expression between genotypes. Cold stress induced changes in ethylene and abscisic acid-mediated pathways differentially between genotypes, suggesting that MD2 may be more susceptible to hormone-mediated early flowering. The differentially expressed genes and module hub genes identified in this study are potential candidates for engineering cold tolerance in pineapple to develop new varieties capable of maintaining normal reproduction cycles under cold stress. In addition, a total of 461 core genes involved in the development of reproductive tissues in pineapple were also identified in this study. This research provides an important genomic resource for understanding molecular networks underlying cold stress response and how cold stress affects flowering time in pineapple.


Assuntos
Ananas , Transcriptoma , Resposta ao Choque Frio/genética , Ananas/genética , Perfilação da Expressão Gênica , Genótipo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
6.
Hortic Res ; 9: uhac084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669706

RESUMO

Lycopene content in tomato fruit is largely under genetic control and varies greatly among genotypes. Continued improvement of lycopene content in elite varieties with conventional breeding has become challenging, in part because little is known about the underlying molecular mechanisms in high-lycopene tomatoes (HLYs). We collected 42 HLYs with different genetic backgrounds worldwide. High-performance liquid chromatography (HPLC) analysis revealed lycopene contents differed among the positive control wild tomato Solanum pimpinellifolium, HLYs, the normal lycopene cultivar "Moneymaker", and the non-lycopene cultivar NC 1Y at the pink and red ripe stages. Real-time RT-PCR analysis of expression of the 25 carotenoid biosynthesis pathway genes of each genotype showed a significantly higher expression in nine upstream genes (GGPPS1, GGPPS2, GGPPS3, TPT1, SSU II, PSY2, ZDS, CrtISO and CrtISO-L1 but not the well-studied PSY1, PDS and Z-ISO) at the breaker and/or red ripe stages in HLYs compared to Moneymaker, indicating a higher metabolic flux flow into carotenoid biosynthesis pathway in HLYs. Further conversion of lycopene to carotenes may be prevented via the two downstream genes (ß-LCY2 and ε-LCY), which had low-abundance transcripts at either or both stages. Additionally, the significantly higher expression of four downstream genes (BCH1, ZEP, VDE, and CYP97C11) at either or both ripeness stages leads to significantly lower fruit lycopene content in HLYs than in the wild tomato. This is the first systematic investigation of the role of the complete pathway genes in regulating fruit lycopene biosynthesis across many HLYs, and enables tomato breeding and gene editing for increased fruit lycopene content.

7.
Genes (Basel) ; 13(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327972

RESUMO

U.S. black raspberry (BR) production is currently limited by narrowly adapted, elite germplasm. An improved understanding of genetic control and the stability of pomological traits will inform the development of improved BR germplasm and cultivars. To this end, the analysis of a multiple-environment trial of a BR mapping population derived from a cross that combines wild ancestors introgressed with commercial cultivars on both sides of its pedigree has provided insights into genetic variation, genotype-by-environment interactions, quantitative trait loci (QTL), and QTL-by-environment interactions (QEI) of fruit quality traits among diverse field environments. The genetic components and stability of four fruit size traits and six fruit biochemistry traits were characterized in this mapping population following their evaluation over three years at four distinct locations representative of current U.S. BR production. This revealed relatively stable genetic control of the four fruit size traits across the tested production environments and less stable genetic control of the fruit biochemistry traits. Of the fifteen total QTL, eleven exhibited significant QEI. Closely overlapping QTL revealed the linkage of several fruit size traits: fruit mass, drupelet count, and seed fraction. These and related findings are expected to guide further genetic characterization of BR fruit quality, management of breeding germplasm, and development of improved BR cultivars for U.S. production.


Assuntos
Rubus , Mapeamento Cromossômico , Ligação Genética , Melhoramento Vegetal , Locos de Características Quantitativas , Rubus/genética
8.
Hortic Res ; 9: uhac083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611183

RESUMO

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

9.
Front Plant Sci ; 12: 623723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747004

RESUMO

Grafting watermelon scions to interspecific squash hybrids has been found to increase fruit firmness. Triploid (seedless) watermelon are prone to hollow heart (HH), an internal fruit disorder characterized by a crack in the placental tissue expanding to a cavity. Although watermelon with lower tissue firmness tend to have a higher HH incidence, associated differences in cell wall polysaccharide composition are unknown. Grafting "Liberty" watermelon to "Carnivor" (interspecific hybrid rootstock, C. moschata × C. maxima) reduced HH 39% and increased tissue firmness by 3 N. Fruit with and without severe HH from both grafted and non-grafted plants were analyzed to determine differences in cell wall polysaccharides associated with grafting and HH. Alcohol insoluble residues (AIR) were sequentially extracted from placental tissue to yield water soluble (WSF), carbonate soluble (CSF), alkali soluble (ASF), or unextractable (UNX) pectic fractions. The CSF was lower in fruit with HH (24.5%) compared to those without HH (27.1%). AIRs were also reduced, hydrolyzed, and acetylated for GC-MS analysis of monosaccharide composition, and a portion of each AIR was methylated prior to hydrolysis and acetylation to produce partially methylated alditol acetates for polysaccharide linkage assembly. No differences in degree of methylation or galacturonic and glucuronic acid concentrations were found. Glucose and galactose were in highest abundance at 75.9 and 82.4 µg⋅mg-1 AIR, respectively, followed by xylose and arabinose (29.3 and 22.0 µg⋅mg-1). Mannose was higher in fruit with HH (p < 0.05) and xylose was highest in fruit from grafted plants (p < 0.05). Mannose is primarily found in heteromannan and rhamnogalacturonan I side chains, while xylose is found in xylogalacturonan or heteroxylan. In watermelon, 34 carbohydrate linkages were identified with galactose, glucose, and arabinose linkages in highest abundance. This represents the most comprehensive polysaccharide linkage analysis to date for watermelon, including the identification of several new linkages. However, total pectin and cell wall composition data could not explain the increased tissue firmness observed in fruit from grafted plants. Nonetheless, grafting onto the interspecific hybrid rootstock decreased the incidence of HH and can be a useful method for growers using HH susceptible cultivars.

10.
Front Nutr ; 8: 729822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595201

RESUMO

Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.

11.
Prev Nutr Food Sci ; 25(1): 41-49, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32292754

RESUMO

This study investigated the effects of two doses of freeze-dried watermelon (WM) on bone and lipid parameters in ovariectomized (OVX) mice, a model of post-menopausal osteoporosis. Three-month-old C57BL/6 female mice (n=46) were sham-operated (SHAM) or OVX and randomly assigned to the control or WM diets for 12 weeks: SHAM-control, OVX-control, OVX+1%, or 10% (wt/wt) freeze-dried WM. All diets were isocaloric and isonitrogenous, and had the same calcium and phosphorus concentrations. Freeze-dried WM supplementation was not able to prevent the decrease in whole body, tibial, and lumbar bone mineral density due to estrogen deficiency. Micro-computed tomography analyses showed that WM was also not able to modulate changes in tibial trabecular and cortical bone microarchitecture due to ovariectomy. However, the lumbar trabecular micro-architecture analyses revealed that the WM-10% group had a similar connectivity density, trabecular number, trabecular separation, and structure model index as the SHAM group. Supplementation with 10% WM reduced plasma cholesterol and total liver lipids to the level of the SHAM group but was still similar to that of the OVX-control group. Supplementation with 10% WM increased liver catalase (CAT) mRNA levels but had no effects on mRNA levels of glutathione peroxidase (GPX) and the pro-inflammatory cytokine interleukin-6. There were no differences in plasma activity of the antioxidant enzymes GPX and CAT between all treatment groups. Our findings demonstrate some positive effects of watermelon for modulating lipids and attenuating lumbar vertebral bone loss arising from ovarian hormone deficiency.

12.
Nutr Res ; 76: 9-19, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32142970

RESUMO

Postmenopausal status is associated with an increase in total and abdominal body fat as well as increased incidence of insulin resistance and cardiovascular disease. The purpose of this study was to determine if watermelon supplementation affects select systemic markers of atherosclerosis and measures of insulin resistance in overweight and obese postmenopausal women. We hypothesized that overweight and obese postmenopausal women consuming 100% watermelon puree daily for 6 weeks would have improved levels of select systemic markers connected with cardiovascular disease without changing markers of insulin resistance. To test this hypothesis, overweight and obese postmenopausal women were recruited to participate in this study. Participants were randomly assigned to either the control group (no intervention) or the watermelon puree group (WM) for 6 weeks. Plasma concentration of markers connected with atherosclerosis and glycemic control were measured pre- and poststudy. A significant 6% decrease in soluble vascular cell adhesion molecule-1 occurred pre- to poststudy in WM, P = .003. The pattern of change in fasting blood glucose (P = .633), insulin (P = .158), and homeostatic model assessment-estimated insulin resistance (P = .174) did not differ between groups. Pre- to poststudy increases were measured in the fasting plasma concentration of l-arginine (8%, P = .005), cis-lycopene (32%, P = .003), and trans-lycopene (42%, P = .003) in WM. We conclude that 6 weeks of watermelon supplementation improved soluble vascular cell adhesion molecule-1 levels, a marker connected to atherogenesis, independent of changes in body composition or glycemic control.


Assuntos
Aterosclerose/sangue , Citrullus/química , Dieta , Frutas/química , Obesidade/sangue , Pós-Menopausa , Molécula 1 de Adesão de Célula Vascular/sangue , Arginina/sangue , Arginina/uso terapêutico , Aterosclerose/dietoterapia , Aterosclerose/prevenção & controle , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Citrulina/uso terapêutico , Feminino , Humanos , Insulina/sangue , Resistência à Insulina , Licopeno/sangue , Licopeno/uso terapêutico , Pessoa de Meia-Idade , Sobrepeso/sangue , Extratos Vegetais/sangue , Extratos Vegetais/uso terapêutico
13.
Nutr Metab Insights ; 12: 1178638819869946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31452602

RESUMO

OBJECTIVE: Postprandial fluxes in oxidative stress, inflammation, glucose, and lipids, particularly after a high-fat meal (HFM), have been implicated in the development of cardiovascular disease (CVD). The aim of this study is to determine whether acute freeze-dried mango consumption modulates the postprandial response to an HFM. We hypothesized that the addition of mango, which is a rich source of many bioactive components, to an HFM would lower postprandial triglycerides, glucose, and inflammation, and increase antioxidant enzymes, compared to a standard HFM alone. METHODS: In a randomized cross-over study, 24 healthy adult males (18-25 years old) consumed a typical American breakfast (670 kcal; 58% fat) with or without the freeze-dried mango pulp (50 g). Lipids, glucose, antioxidant enzymes, and inflammatory markers were assessed at baseline/fasting and 1, 2, and 4 hours after the HFM. RESULTS: Addition of mango resulted in lower glucose (95.8 ± 4.4 mg/dL; P = .002) and higher high-density lipoprotein cholesterol (HDL-C; 58.4 ± 2.7 mg/dL; P = .01) 1 hour post-HFM compared to control (glucose: 104.8 ± 5.4 mg/dL; HDL-C: 55.2 ± 2.3 mg/dL), although no differences were observed in triglycerides (P = .88 for interaction). No significant meal × time interactions were detected in markers of inflammation (C-reactive protein, P = .17; interleukin-6, P = .30) or antioxidant enzymes (superoxide dismutase, P = .77; glutathione peroxidase, P = .36; catalase, P = .32) in the postprandial period. CONCLUSIONS: When added to an HFM, acute mango consumption had modest beneficial effects on postprandial glucose and HDL-C responses, but did not alter triglyceride, inflammatory, or antioxidant enzymes.

14.
J Nutr ; 137(12): 2680-5, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18029483

RESUMO

Watermelon is rich in L-citrulline, an effective precursor of L-arginine. This study was conducted to determine whether dietary supplementation with watermelon pomace juice could ameliorate the metabolic syndrome in the Zucker diabetic fatty (ZDF) rat, an animal model of noninsulin-dependent diabetes mellitus. Nine-week-old ZDF rats were assigned randomly to receive drinking water containing 0% (control) or 0.2% L-arginine (as 0.24% L-arginine-HCl), 63% watermelon pomace juice, 0.01% lycopene, or 0.05% citrus pectin (n = 6 per treatment). At the end of the 4-wk supplementation period, blood samples, aortic rings, and hearts were obtained for biochemical and physiological analyses. Feed or energy intakes did not differ among the 5 groups of rats. However, dietary supplementation with watermelon pomace juice or L-arginine increased serum concentrations of arginine; reduced fat accretion; lowered serum concentrations of glucose, free fatty acids, homocysteine, and dimethylarginines; enhanced GTP cyclohydrolase-I activity and tetrahydrobiopterin concentrations in the heart; and improved acetylcholine-induced vascular relaxation. Compared with the control, dietary supplementation with lycopene or citrus pectin did not affect any measured parameter. These results provide the first evidence to our knowledge for a beneficial effect of watermelon pomace juice as a functional food for increasing arginine availability, reducing serum concentrations of cardiovascular risk factors, improving glycemic control, and ameliorating vascular dysfunction in obese animals with type-II diabetes.


Assuntos
Citrullus , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Suplementos Nutricionais , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Animais , Aorta/efeitos dos fármacos , Arginina/sangue , Bebidas , Glicemia , Citrulina/sangue , Ingestão de Líquidos , Ingestão de Alimentos , Metabolismo Energético , GTP Cicloidrolase/metabolismo , Lipídeos/sangue , Síndrome Metabólica/metabolismo , Miocárdio/enzimologia , Óxido Nítrico/sangue , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Zucker , Água
15.
Nutrition ; 23(3): 261-6, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17352962

RESUMO

OBJECTIVE: Watermelon is a rich source of citrulline, an amino acid that can be metabolized to arginine, a conditionally essential amino acid for humans. Arginine is the nitrogenous substrate used in the synthesis of nitric oxide and plays an essential role in cardiovascular and immune functions. No detailed studies have been conducted to evaluate plasma arginine response in humans after long-term feeding of citrulline from natural plant sources. This study investigated if watermelon juice consumption increases fasting concentrations of plasma arginine, ornithine, and citrulline in healthy adult humans. METHODS: Subjects (n = 12-23/treatment) consumed a controlled diet and 0 (control), 780, or 1560 g of watermelon juice per day for 3 wk in a crossover design. The treatments provided 1 and 2 g of citrulline per day. Treatment periods were preceded by washout periods of 2 to 4 wk. RESULTS: Compared with the baseline, fasting plasma arginine concentrations increased 12% after 3 wk of the lower-dose watermelon treatment; arginine and ornithine concentrations increased 22% and 18%, respectively, after 3 wk of the higher-dose watermelon treatment. Fasting citrulline concentrations did not increase relative to the control but remained stable throughout the study. CONCLUSION: The increased fasting plasma concentrations of arginine and ornithine and stable concentrations of plasma citrulline in response to watermelon juice consumption indicated that the citrulline from this plant origin was effectively converted into arginine. These results demonstrate that plasma concentration of arginine can be increased through intake of citrulline from watermelon.


Assuntos
Arginina/sangue , Citrulina/administração & dosagem , Citrulina/metabolismo , Citrullus , Adulto , Idoso , Bebidas , Citrulina/sangue , Citrullus/química , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ornitina/sangue
16.
Nutr Metab Insights ; 10: 1178638817731770, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983188

RESUMO

This pilot study examined the effects of freeze-dried mango (Mangifera indica L.) supplementation on anthropometric measurements, lipid parameters, and inflammatory mediators in obese individuals. A total of 20 obese (body mass index [BMI]: 30-35 kg/m2) adults (11 men and 9 women), aged 20 to 50 years, received 10 g/d of ground freeze-dried mango pulp for 12 weeks. Anthropometrics, lipids, and inflammatory mediators were assessed at baseline and after 12 weeks of mango supplementation. There were no differences between baseline and final visits in inflammatory mediators, lipids, diet, physical activity, and anthropometrics. Relationships were present at baseline and final visits between adiponectin and high-density lipoprotein cholesterol and between leptin and fat mass. Correlations were found after 12 weeks of mango supplementation between leptin and the following variables: waist-to-height ratio, BMI, percent fat, and fat mass. Our findings demonstrate that 12-week consumption of freeze-dried mango by obese individuals has no impact on obesity-related inflammation.

17.
J Agric Food Chem ; 54(16): 5868-74, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881688

RESUMO

Watermelon contains lycopene, a red carotenoid pigment that has strong antioxidant properties. The lycopene content of watermelon is substantial, contributing 8-20 mg per 180 g serving. There are no reports on carotenoid changes in whole watermelon during storage. Three types of watermelon, open-pollinated seeded, hybrid seeded, and seedless types, were stored at 5, 13, and 21 degrees C for 14 days and flesh color, composition, and carotenoid content were compared to those of fruit not stored. Watermelons stored at 21 degrees C had increased pH, chroma, and carotenoid content compared to fresh fruit. Compared to fresh fruit, watermelons stored at 21 degrees C gained 11-40% in lycopene and 50-139% in beta-carotene, whereas fruit held at 13 degrees C changed little in carotenoid content. These results indicate that carotenoid biosynthesis in watermelons can be affected by temperature and storage.


Assuntos
Antioxidantes/análise , Carotenoides/análise , Citrullus/química , Conservação de Alimentos/métodos , Concentração de Íons de Hidrogênio , Sementes , Temperatura , Fatores de Tempo
18.
J Agric Food Chem ; 54(7): 2593-7, 2006 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-16569049

RESUMO

The lycopene content of 50 commercial cultivars of seeded and seedless red-fleshed watermelons was determined. Scanning colorimetric and spectrophotometric assays of total lycopene were used to separate watermelon cultivars into low (<50 mg/kg fw), average (50-70 mg/kg fw), high (70-90 mg/kg fw), and very high (>90 mg/kg fw). Cultivars varied greatly in lycopene content, ranging from 33 to 100 mg/kg. Most of the seeded hybrid cultivars had average lycopene contents. Sixteen of the 33 seedless types had lycopene contents in the high and very high ranges. All-trans-lycopene was the predominant carotenoid (84-97%) in all watermelon cultivars measured by high-performance liquid chromatography, but the germplasm differed in the relative amounts of cis-lycopene, beta-carotene, and phytofluene. Red-fleshed watermelon genotypes vary extensively in carotenoid content and offer opportunities for developing watermelons with specifically enhanced carotenoids.


Assuntos
Carotenoides/análise , Citrullus/química , Frutas/química , Cromatografia Líquida de Alta Pressão , Citrullus/genética , Colorimetria , Genótipo , Licopeno , Especificidade da Espécie , Espectrofotometria
19.
Nutrients ; 8(8)2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556488

RESUMO

Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.


Assuntos
Antioxidantes/metabolismo , Bebidas/análise , Carboidratos/farmacologia , Citrullus/química , Exercício Físico , Carboidratos/administração & dosagem , Carboidratos/química , Estudos Cross-Over , Humanos , Doenças do Sistema Imunitário , Inflamação , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
20.
Hortic Res ; 3: 16066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066557

RESUMO

Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA