Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38842023

RESUMO

One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved are regarded as shy. Brain monoamines (i.e. serotonin, dopamine and noradrenaline) have been found to play a role in a variety of behaviors related to risk taking. Using zebrafish, we investigated whether there was a relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness during the initial exposure to the tank in female animals. The DOPAC:DA ratio correlated with boldness behavior on the third day in male fish. There was no relationship between boldness and noradrenaline. To probe differences in serotonergic function in bold and shy fish, we administered a selective serotonin reuptake inhibitor, escitalopram, and assessed exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in bold and shy female animals: the drug caused bold fish to spend more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings indicate that variation in serotonergic function has sex-specific contributions to individual differences in risk-taking behavior.


Assuntos
Individualidade , Serotonina , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Peixe-Zebra/metabolismo , Feminino , Serotonina/metabolismo , Masculino , Comportamento Exploratório/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Citalopram/farmacologia , Comportamento Animal/efeitos dos fármacos , Assunção de Riscos , Dopamina/metabolismo , Ácido Hidroxi-Indolacético/metabolismo
2.
Mol Psychiatry ; 27(3): 1683-1693, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027678

RESUMO

The fundamental role of epigenetic regulatory mechanisms involved in neuroplasticity and adaptive responses to traumatic brain injury (TBI) is gaining increased recognition. TBI-induced neurodegeneration is associated with several changes in the expression-activity of various epigenetic regulatory enzymes, including histone deacetylases (HDACs). In this study, PET/CT with 6-([18F]trifluoroacetamido)-1- hexanoicanilide ([18F]TFAHA) to image spatial and temporal dynamics of HDACs class IIa expression-activity in brains of adult rats subjected to a weight drop model of diffuse, non-penetrating, mild traumatic brain injury (mTBI). The mTBI model was validated by histopathological and immunohistochemical analyses of brain tissue sections for localization and magnitude of expression of heat-shock protein-70 kDa (HSP70), amyloid precursor protein (APP), cannabinoid receptor-2 (CB2), ionized calcium-binding adapter protein-1 (IBA1), histone deacetylase-4 and -5 (HDAC4 and HDAC5). In comparison to baseline, the expression-activities of HDAC4 and HDAC5 were downregulated in the hippocampus, nucleus accumbens, peri-3rd ventricular part of the thalamus, and substantia nigra at 1-3 days post mTBI, and remained low at 7-8 days post mTBI. Reduced levels of HDAC4 and HDAC5 expression observed in neurons of these brain regions post mTBI were associated with the reduced nuclear and neuropil levels of HDAC4 and HDAC5 with the shift to perinuclear localization of these enzymes. These results support the rationale for the development of therapeutic strategies to upregulate expression-activity of HDACs class IIa post-TBI. PET/CT (MRI) with [18F]TFAHA can facilitate the development and clinical translation of unique therapeutic approaches to upregulate the expression and activity of HDACs class IIa enzymes in the brain after TBI.


Assuntos
Concussão Encefálica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anilidas , Animais , Epigênese Genética , Fluoracetatos , Histona Desacetilases/metabolismo , Ratos
3.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917316

RESUMO

The cannabinoid system is independently affected by stress and chronic ethanol exposure. However, the extent to which co-occurrence of traumatic stress and chronic ethanol exposure modulates the cannabinoid system remains unclear. We examined levels of cannabinoid system components, anandamide, 2-arachidonoylglycerol, fatty acid amide hydrolase, and monoacylglycerol lipase after mouse single-prolonged stress (mSPS) or non-mSPS (Control) exposure, with chronic intermittent ethanol (CIE) vapor or without CIE vapor (Air) across several brain regions using ultra-high-performance liquid chromatography tandem mass spectrometry or immunoblotting. Compared to mSPS-Air mice, anandamide and 2-arachidonoylglycerol levels in the anterior striatum were increased in mSPS-CIE mice. In the dorsal hippocampus, anandamide content was increased in Control-CIE mice compared to Control-Air, mSPS-Air, or mSPS-CIE mice. Finally, amygdalar anandamide content was increased in Control-CIE mice compared to Control-Air, or mSPS-CIE mice, but the anandamide content was decreased in mSPS-CIE compared to mSPS-Air mice. Based on these data we conclude that the effects of combined traumatic stress and chronic ethanol exposure on the cannabinoid system in reward pathway regions are driven by CIE exposure and that traumatic stress affects the cannabinoid components in limbic regions, warranting future investigation of neurotherapeutic treatment to attenuate these effects.


Assuntos
Canabinoides/metabolismo , Etanol/efeitos adversos , Sistema Límbico/metabolismo , Recompensa , Transtornos de Estresse Pós-Traumáticos/metabolismo , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/metabolismo , Alcamidas Poli-Insaturadas/metabolismo
4.
J Neurochem ; 136(6): 1196-1203, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26725566

RESUMO

Pavlovian conditioned approach (PCA) is a behavioral procedure that can be used to assess individual differences in the addiction vulnerability of drug-naïve rats and identify addiction vulnerability factors. Using proton magnetic resonance spectroscopy (1 H-MRS) ex vivo, we simultaneously analyzed concentrations of multiple neurochemicals throughout the mesocorticolimbic system 2 weeks after PCA training in order to identify potential vulnerability factors to addiction in drug-naïve rats for future investigations. Levels of myo-inositol (Ins), a 1 H-MRS-detectable marker of glial activity/proliferation, were increased in the nucleus accumbens (NAc) and ventral hippocampus, but not dorsal hippocampus or medial prefrontal cortex, of sign-trackers compared to goal-trackers or intermediate responders. In addition, Ins levels positively correlated with PCA behavior in the NAc and ventral hippocampus. Because the sign-tracker phenotype is associated with increased drug-seeking behavior, these results observed in drug-naïve rats suggest that alterations in glial activity/proliferation within these regions may represent an addiction vulnerability factor. Sign-tracking rats preferentially approach reward cues during Pavlovian conditioning, while goal-trackers instead approach the location of impending reward. Sign-trackers are also more prone to cue-induced drug-seeking behavior. We used magnetic resonance spectroscopy to show that myo-inositol levels are higher in the ventral hippocampus and nucleus accumbens of sign-trackers relative to goal-trackers. Thus, elevated myo-inositol may be a vulnerability factor for addiction.

5.
Hippocampus ; 26(11): 1424-1434, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27438780

RESUMO

Individual variation in the attribution of motivational salience to reward-related cues is believed to underlie addiction vulnerability. Pavlovian conditioned approach measures individual variation in motivational salience by identifying rats that are attracted to and motivated by reward cues (sign-trackers) or motivationally fixed on the reward itself (goal-trackers). Previously, it has been demonstrated that sign-trackers are more vulnerable to addiction-like behavior. Moreover, sign-trackers release more dopamine in the nucleus accumbens than goal-trackers in response to reward-related cues, and sign- but not goal-tracking behavior is dopamine-dependent. In the present study, we investigated whether the ventral hippocampus, a potent driver of dopaminergic activity in the nucleus accumbens, modulates the acquisition and expression of Pavlovian conditioned approach behavior. In Experiment 1, lesions of the ventral, but not dorsal or total hippocampus, decreased sign-tracking behavior. In Experiment 2, lesions of the ventral hippocampus did not affect the expression of sign- or goal-tracking behaviors nor conditioned reinforcement. In addition, temporary inactivation of the ventral subiculum, the main output pathway of the ventral hippocampus, did not affect the expression of sign- or goal-tracking behaviors. High-pressure liquid chromatography of nucleus accumbens tissue punches revealed that ventral hippocampal lesions decreased levels of homovanillic acid and the homovanillic acid/dopamine ratio (a marker of dopamine release and metabolism) in only sign-trackers, and decreased accumbal norepinephrine levels in both sign- and goal-trackers. These results suggest that the ventral hippocampus is important for the acquisition but not expression of sign-tracking behavior, possibly as a result of altered dopamine and norepinephrine in the nucleus accumbens. © 2016 Wiley Periodicals, Inc.


Assuntos
Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Condicionamento Clássico/fisiologia , Hipocampo/lesões , Motivação/fisiologia , Detecção de Sinal Psicológico/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Sinais (Psicologia) , Dopamina/metabolismo , Agonistas de Aminoácidos Excitatórios/toxicidade , Masculino , N-Metilaspartato/toxicidade , Núcleo Accumbens/fisiologia , Probabilidade , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Reforço Psicológico
6.
J Neurochem ; 135(6): 1218-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26146906

RESUMO

The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.


Assuntos
Adenilil Ciclases/metabolismo , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Adenilil Ciclases/deficiência , Adenilil Ciclases/genética , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Metalotioneína 3 , Camundongos Knockout , Atividade Motora/efeitos dos fármacos
7.
NMR Biomed ; 28(11): 1480-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26411897

RESUMO

A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence.


Assuntos
Sinalização do Cálcio/fisiologia , Cocaína/administração & dosagem , Locomoção/fisiologia , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Meios de Contraste/farmacocinética , Relação Dose-Resposta a Droga , Locomoção/efeitos dos fármacos , Masculino , Manganês/farmacocinética , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estatística como Assunto
8.
Mol Cell Neurosci ; 59: 119-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24534010

RESUMO

Working memory, which is dependent on higher-order executive function in the prefrontal cortex, is often disrupted in patients exposed to blast overpressure. In this study, we evaluated working memory and medial prefrontal neurochemical status in a rat model of blast neurotrauma. Adult male Sprague-Dawley rats were anesthetized with 3% isoflurane and exposed to calibrated blast overpressure (17 psi, 117 kPa) while sham animals received only anesthesia. Early neurochemical effects in the prefrontal cortex included a significant decrease in betaine (trimethylglycine) and an increase in GABA at 24 h, and significant increases in glycerophosphorylcholine, phosphorylethanolamine, as well as glutamate/creatine and lactate/creatine ratios at 48 h. Seven days after blast, only myo-inositol levels were altered showing a 15% increase. Compared to controls, short-term memory in the novel object recognition task was significantly impaired in animals exposed to blast overpressure. Working memory in control animals was negatively correlated with myo-inositol levels (r=-.759, p<0.05), an association that was absent in blast exposed animals. Increased myo-inositol may represent tardive glial scarring in the prefrontal cortex, a notion supported by GFAP changes in this region after blast overexposure as well as clinical reports of increased myo-inositol in disorders of memory.


Assuntos
Traumatismos por Explosões/fisiopatologia , Lesões Encefálicas/fisiopatologia , Inositol/metabolismo , Memória de Curto Prazo , Córtex Pré-Frontal/metabolismo , Animais , Betaína/metabolismo , Traumatismos por Explosões/metabolismo , Lesões Encefálicas/metabolismo , Creatina/metabolismo , Etanolaminas/metabolismo , Ácido Glutâmico/metabolismo , Glicerilfosforilcolina/metabolismo , Ácido Láctico/metabolismo , Masculino , Reconhecimento Fisiológico de Modelo , Córtex Pré-Frontal/lesões , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
9.
Neurotoxicol Teratol ; 101: 107317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199311

RESUMO

Currently, there is a gap in understanding the neurobiological impact early adolescent toluene exposure has on subsequent actions of other drugs. Adolescent (PND 28-32) male Swiss-Webster mice (N = 210) were exposed to 0, 2000, or 4000 ppm of toluene vapor for 30 min/day for 5 days. Immediately following the last toluene exposure (PND 32; n = 15) or after a short delay (PND 35; n = 15), a subset of subjects' brains was collected for monoamine analysis. Remaining mice were assigned to one of two abstinence periods: a short 4-day (PND 36) or long 12-day (PND 44) delay after toluene exposure. Mice were then subjected to a cumulative dose response assessment of either cocaine (0, 2.5, 5, 10, 20 mg/kg; n = 60), ethanol (0, 0.5, 1, 2, 4 g/kg; n = 60), or saline (5 control injections; n = 60). Toluene concentration-dependently increased locomotor activity during exposure. When later challenged, mice exposed previously to toluene were significantly less active after cocaine (10 and 20 mg/kg) compared to air-exposed controls. Animals were also less active at the highest dose of alcohol (4 g/kg) following prior exposure to 4000 ppm when compared to air-exposed controls. Analysis of monoamines and their metabolites using High Pressure Liquid Chromatography (HPLC) within the medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (dSTR), and ventral tegmental area (VTA) revealed subtle effects on monoamine or metabolite levels following cumulative dosing that varied by drug (cocaine and ethanol) and abstinence duration. Our results suggest that early adolescent toluene exposure produces behavioral desensitization to subsequent cocaine-induced locomotor activity with subtle enhancement of ethanol's depressive effects and less clear impacts on levels of monoamines.


Assuntos
Cocaína , Etanol , Humanos , Camundongos , Animais , Masculino , Adolescente , Etanol/farmacologia , Encéfalo , Núcleo Accumbens/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Cocaína/farmacologia , Tolueno/toxicidade
10.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405806

RESUMO

One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved as shy. Brain monoamines (i.e., serotonin, dopamine, and norepinephrine) have been found to play a role in a variety of behaviors related to risk taking. Genetic variation related to monoamine function have also been linked to personality in both humans and animals. Using zebrafish, we investigated the relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a sex-specific correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness that was limited to female animals; there were no relationships between boldness and dopamine or norepinephrine. To probe differences in serotonergic function, we administered a serotonin reuptake inhibitor, escitalopram, to bold and shy fish, and assessed their exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in female animals with bold fish spending more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings suggest that variation in serotonergic function makes sex-specific contributions to individual differences in risk taking behavior.

11.
Neurophotonics ; 11(1): 015007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38344025

RESUMO

Significance: There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim: Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach: Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion: We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.

12.
Neuropharmacology ; : 110060, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960134

RESUMO

The escalating incidence of opioid-related issues among pregnant women in the United States underscores the critical necessity to understand the effects of opioid use and Medication for Opioid Use Disorders (MOUDs) during pregnancy. This research employed a translational rodent model to examine the impact of gestational exposure to buprenorphine (BUP) or morphine on maternal behaviors and offspring well-being. Female rats received BUP or morphine before conception, representing established use, with exposure continuing until postnatal day 2 or discontinued on gestational day 19 to mimic treatment cessation before birth. Maternal behaviors - including care, pup retrieval, and preference - as well as hunting behaviors and brain neurotransmitter levels were assessed. Offspring were evaluated for mortality, weight, length, milk bands, surface righting latency, withdrawal symptoms, and brain neurotransmitter levels. Our results reveal that regardless of exposure length (i.e., continued or discontinued), BUP resulted in reduced maternal care in contrast to morphine-exposed and control dams. Opioid exposure altered brain monoamine levels in the dams and offspring, and was associated with increased neonatal mortality, reduced offspring weight, and elevated withdrawal symptoms compared to controls. These findings underscore BUP's potential disruption of maternal care, contributing to increased pup mortality and altered neurodevelopmental outcomes in the offspring. This study calls for more comprehensive research into prenatal BUP exposure effects on the maternal brain and infant development with the aim to mitigate adverse outcomes in humans exposed to opioids during pregnancy.

13.
Psychopharmacology (Berl) ; 240(12): 2585-2595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658879

RESUMO

RATIONALE: The contribution of norepinephrine on the different phases of spatial memory processing remains incompletely understood. To address this gap, this study depleted norepinephrine in the brain and then conducted a spatial learning task with multiple phases. METHODS: Male and female Wistar rats were administered 50 mg/kg/i.p. of DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) to deplete norepinephrine. After 10 days, rats were trained on a 20-hole Barnes maze spatial navigation task for 5 days. On the fifth day, animals were euthanized and HPLC was used to confirm depletion of norepinephrine in select brain regions. In Experiment 2, rats underwent a similar Barnes maze procedure that continued beyond day 5 to investigate memory retrieval and updating via a single probe trial and two reversal learning periods. RESULTS: Rats did not differ in Barnes maze acquisition between DSP-4 and saline-injected rats; however, initial acquisition differed between the sexes. HPLC analysis confirmed selective depletion of norepinephrine in dorsal hippocampus and cingulate cortex without impact to other monoamines. When retrieval was tested through a probe trial, DSP-4-improved memory retrieval in males but impaired it in females. Cognitive flexibility was transiently impacted by DSP-4 in males only. CONCLUSIONS: Despite significantly reducing levels of norepinephrine, DSP-4 had only a modest impact on spatial learning and behavioral flexibility. Memory retrieval and early reversal learning were most affected and in a sex-specific manner. These data suggest that norepinephrine has sex-specific neuromodulatory effects on memory retrieval with a lesser effect on cognitive flexibility and no impact on acquisition of learned behavior.


Assuntos
Norepinefrina , Aprendizagem Espacial , Ratos , Animais , Masculino , Feminino , Norepinefrina/farmacologia , Ratos Wistar , Encéfalo , Memória Espacial , Aprendizagem em Labirinto
14.
Photoacoustics ; 33: 100551, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021296

RESUMO

Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.

15.
Neurotoxicol Teratol ; 91: 107076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167944

RESUMO

Environmental exposure to toxicants is a major health issue and a leading risk factor for premature mortality worldwide, including environmental exposures to volatile organic compounds (VOCs), specifically Benzene, Toluene, Ethylbenzene, and Xylene (BTEX). While exposure to these compounds individually has shown behavioral and neurochemical effects, this investigation examined the impact of exposure to combined BTEX using a preclinical model. Male Swiss Webster mice were exposed to BTEX vapors designed to approximate environmental levels in urban communities. Animals were exposed to one of four treatment conditions: a 0-ppm (air control), two BTEX groups representing levels of environmental-like exposure, and a fourth group modeling occupational-like exposure. These exposures were conducted in 1.5-h sessions, 2 sessions/day, 5 days/week, for 3 weeks. Effects on coordination (i.e., rotarod and inverted screen test), learning and memory (i.e., Y-maze), and locomotor behavior (i.e., movement during exposure) were assessed during and after exposure. Monoamine levels in the medial prefrontal cortex and nucleus accumbens were assessed immediately following exposure. Effects of BTEX exposure were found on the variance of locomotor activity but not in other behavioral or neurochemical assessments. These results indicate that the combination of inhaled BTEX at environmentally representative concentrations has demonstrable, albeit subtle, effects on behavior.


Assuntos
Poluentes Atmosféricos , Xilenos , Animais , Benzeno/análise , Benzeno/toxicidade , Derivados de Benzeno/análise , Derivados de Benzeno/toxicidade , Masculino , Camundongos , Tolueno/toxicidade , Xilenos/análise , Xilenos/toxicidade
16.
Addict Neurosci ; 42022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540409

RESUMO

Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [18F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [18F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups. A 3 h-access FR1-schedule of cocaine-IVSA (0.5 mg/kg/infusion) for 12 continuous days was used with male Sprague Dawley rats following jugular vein catheterization. PET/CT neuroimaging with [18F]TFAHA was acquired in a dynamic mode over 40 min post-radiotracer administration at baseline and on day 12 of cocaine-IVSA using a longitudinal, repeated design. This study shows that high-cocaine intake significantly decreases class IIa HDAC expression-activity in NAc, while low-cocaine intake significantly decreases expression-activity in HC in male rats. These findings suggest the individual rats with low-cocaine intake had epigenetic changes in HC, where drug-associative changes occur. Alternatively, individuals with high-cocaine intake had robust epigenetic changes in NAc, where rewared-related behaviors originate. These findings are the first longitudinal data obtained in vivo to implicate class IIa HDACs in the persistent behavioral effects of cocaine. Furthermore, our results are consistent with published research implicating class IIa HDACs in cocaine-induced brain changes and studies suggesting a relationship between an individual's drug-taking behavior and regional pattern of epigenetic changes in the brain.

17.
Pacing Clin Electrophysiol ; 34(2): 193-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20946279

RESUMO

BACKGROUND: The use of recreational drugs has been observed to have deleterious effects on the heart. The aim of our study was to evaluate the effect of substance abuse on the defibrillation threshold (DFT) in patients with implantable cardioverter-defibrillators (ICDs). METHODS: A retrospective analysis was conducted on patients who had undergone ICD placement at a tertiary university medical center in Detroit, Michigan. Subjects were identified based on self-reported drug use and placed into one of the three groups: controls, cocaine, and other illicit drugs. Due to a disparity in race among groups, the main analysis on DFT value was conducted on African-American patients only. Furthermore, exploratory analyses were conducted to investigate the effects of marijuana use and race on DFT values. RESULTS: A history of cocaine use (n = 17) significantly increases DFT among African Americans (17.3 ± 8 Joule [J] vs 12.5 ± 5 J in cases vs controls, P < 0.05), while previous use of marijuana does not significantly influence DFT. African-American patients with a history of illicit drug use had indications for ICD implantation at an earlier age and that within the control (nondrug using) group; African Americans (n = 73) had higher DFT compared to Caucasians (n = 32), (14.5 ± 0.5 J vs 9.7 ± 0.6 J, P < 0.05). CONCLUSIONS: A history of cocaine use in African Americans with ICD is a risk factor for high DFT and race itself (being African American) may be a risk for high DFT. Use of high-energy ICDs and other DFT lowering techniques may be considered for patients who have used or continue to use cocaine or in whom DFT testing cannot be performed at the time of implantation.


Assuntos
Desfibriladores Implantáveis/estatística & dados numéricos , Limiar Diferencial/efeitos dos fármacos , Drogas Ilícitas/intoxicação , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Taquicardia Ventricular/epidemiologia , Fibrilação Ventricular/epidemiologia , Comorbidade , Feminino , Humanos , Incidência , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Taquicardia Ventricular/prevenção & controle , Resultado do Tratamento , Fibrilação Ventricular/prevenção & controle
18.
Drug Alcohol Depend ; 229(Pt A): 109101, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628096

RESUMO

BACKGROUND: Although fentanyl has gained widespread prominence, there remains a lack of knowledge on this opioid synthetic agonist, particularly related to sex effects. Therefore, we conducted behavioral tests in female and male rats to measure drug abuse-related responses to fentanyl hypothesizing sex-specific responses. METHODS: Using female and male rats, we measured the effects of acute or repeated administration of fentanyl (20 µg/kg) on locomotor activity (LMA) and behavioral sensitization in an open field test. We further measured contextual-reward and associated locomotor activity during training in a conditioned place preference (CPP) paradigm using a low (4 µg/kg) or high (16 µg/kg) dose of fentanyl. Vaginal lavage samples were collected from female rats in the CPP study, and the estrous phase was determined based on the cytological characterization. RESULTS: Female, but not male, rats showed elevated LMA in response to acute fentanyl and behavioral sensitization to repeated administration of fentanyl. Fentanyl produced significant CPP in both sexes, but it was more potent in males. Finally, our secondary investigation of the estrous cycle on fentanyl-CPP suggests that non-estrus phases, likely reflecting high estradiol, may predict the degree of fentanyl preference in females. CONCLUSIONS: Fentanyl was more potent and/or effective to produce LMA and LMA sensitization in females but more potent to produce CPP in males. Furthermore, the role of sex in fentanyl responses varied across endpoints, and sex differences in LMA were not predictive of sex differences in CPP.


Assuntos
Fentanila , Recompensa , Animais , Condicionamento Clássico , Feminino , Fentanila/farmacologia , Locomoção , Masculino , Ratos
19.
Front Behav Neurosci ; 15: 652636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054443

RESUMO

Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.

20.
Photoacoustics ; 24: 100297, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34522608

RESUMO

Measuring neuroactivity underlying complex behaviors facilitates understanding the microcircuitry that supports these behaviors. We have developed a functional and molecular photoacoustic tomography (F/M-PAT) system which allows direct imaging of Fos-expressing neuronal ensembles in Fos-LacZ transgenic rats with a large field-of-view and high spatial resolution. F/M-PAT measures the beta-galactosidase catalyzed enzymatic product of exogenous chromophore X-gal within ensemble neurons. We used an ex vivo imaging method in the Wistar Fos-LacZ transgenic rat, to detect neuronal ensembles in medial prefrontal cortex (mPFC) following cocaine administration or a shock-tone paired stimulus. Robust and selective F/M-PAT signal was detected in mPFC neurons after both conditions (compare to naive controls) demonstrating successful and direct detection of Fos-expressing neuronal ensembles using this approach. The results of this study indicate that F/M-PAT can be used in conjunction with Fos-LacZ rats to monitor neuronal ensembles that underlie a range of behavioral processes, such as fear learning or addiction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA