Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nucleic Acids Res ; 50(D1): D996-D1003, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791415

RESUMO

Ensembl Genomes (https://www.ensemblgenomes.org) provides access to non-vertebrate genomes and analysis complementing vertebrate resources developed by the Ensembl project (https://www.ensembl.org). The two resources collectively present genome annotation through a consistent set of interfaces spanning the tree of life presenting genome sequence, annotation, variation, transcriptomic data and comparative analysis. Here, we present our largest increase in plant, metazoan and fungal genomes since the project's inception creating one of the world's most comprehensive genomic resources and describe our efforts to reduce genome redundancy in our Bacteria portal. We detail our new efforts in gene annotation, our emerging support for pangenome analysis, our efforts to accelerate data dissemination through the Ensembl Rapid Release resource and our new AlphaFold visualization. Finally, we present details of our future plans including updates on our integration with Ensembl, and how we plan to improve our support for the microbial research community. Software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license). Data updates are synchronised with Ensembl's release cycle.


Assuntos
Bases de Dados Genéticas , Genômica , Internet , Software , Animais , Biologia Computacional , Genoma Bacteriano/genética , Genoma Fúngico/genética , Genoma de Planta/genética , Plantas/classificação , Plantas/genética , Vertebrados/classificação , Vertebrados/genética
2.
Hum Mutat ; 43(8): 986-997, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34816521

RESUMO

The Ensembl Variant Effect Predictor (VEP) is a freely available, open-source tool for the annotation and filtering of genomic variants. It predicts variant molecular consequences using the Ensembl/GENCODE or RefSeq gene sets. It also reports phenotype associations from databases such as ClinVar, allele frequencies from studies including gnomAD, and predictions of deleteriousness from tools such as Sorting Intolerant From Tolerant and Combined Annotation Dependent Depletion. Ensembl VEP includes filtering options to customize variant prioritization. It is well supported and updated roughly quarterly to incorporate the latest gene, variant, and phenotype association information. Ensembl VEP analysis can be performed using a highly configurable, extensible command-line tool, a Representational State Transfer application programming interface, and a user-friendly web interface. These access methods are designed to suit different levels of bioinformatics experience and meet different needs in terms of data size, visualization, and flexibility. In this tutorial, we will describe performing variant annotation using the Ensembl VEP web tool, which enables sophisticated analysis through a simple interface.


Assuntos
Genômica , Software , Biologia Computacional , Bases de Dados Genéticas , Frequência do Gene , Humanos , Anotação de Sequência Molecular , Fenótipo
3.
Nucleic Acids Res ; 48(D1): D941-D947, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31584097

RESUMO

To sustain and develop the largest fully open human genomic resources the International Genome Sample Resource (IGSR) (https://www.internationalgenome.org) was established. It is built on the foundation of the 1000 Genomes Project, which created the largest openly accessible catalogue of human genomic variation developed from samples spanning five continents. IGSR (i) maintains access to 1000 Genomes Project resources, (ii) updates 1000 Genomes Project resources to the GRCh38 human reference assembly, (iii) adds new data generated on 1000 Genomes Project cell lines, (iv) shares data from samples with a similarly open consent to increase the number of samples and populations represented in the resources and (v) provides support to users of these resources. Among recent updates are the release of variation calls from 1000 Genomes Project data calculated directly on GRCh38 and the addition of high coverage sequence data for the 2504 samples in the 1000 Genomes Project phase three panel. The data portal, which facilitates web-based exploration of the IGSR resources, has been updated to include samples which were not part of the 1000 Genomes Project and now presents a unified view of data and samples across almost 5000 samples from multiple studies. All data is fully open and publicly accessible.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Genômica , Software , Biologia Computacional/métodos , Genômica/métodos , Humanos , Interface Usuário-Computador , Navegador
4.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31598706

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animais , Caenorhabditis elegans/genética , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Plantas/genética , Valores de Referência , Software , Interface Usuário-Computador
5.
Nucleic Acids Res ; 46(D1): D754-D761, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29155950

RESUMO

The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.


Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma , Disseminação de Informação , Animais , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Vertebrados/genética , Navegador
6.
Nucleic Acids Res ; 46(D1): D802-D808, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29092050

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including genome sequence, gene models, transcript sequence, genetic variation, and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments and expansions. These include the incorporation of almost 20 000 additional genome sequences and over 35 000 tracks of RNA-Seq data, which have been aligned to genomic sequence and made available for visualization. Other advances since 2015 include the release of the database in Resource Description Framework (RDF) format, a large increase in community-derived curation, a new high-performance protein sequence search, additional cross-references, improved annotation of non-protein-coding genes, and the launch of pre-release and archival sites. Collectively, these changes are part of a continuing response to the increasing quantity of publicly-available genome-scale data, and the consequent need to archive, integrate, annotate and disseminate these using automated, scalable methods.


Assuntos
Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Bases de Dados de Proteínas , Eucariotos/genética , Genômica , Sequência de Aminoácidos , Animais , Sequência de Bases , Mineração de Dados , Previsões , Genoma , Anotação de Sequência Molecular , RNA/genética , Interface Usuário-Computador
7.
Nucleic Acids Res ; 45(D1): D854-D859, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27638885

RESUMO

The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma , Genômica/métodos , Navegador
8.
Nucleic Acids Res ; 45(D1): D635-D642, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899575

RESUMO

Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Ferramenta de Busca , Software , Navegador , Animais , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Anotação de Sequência Molecular , Especificidade da Espécie , Vertebrados
9.
Proc Natl Acad Sci U S A ; 113(20): E2812-21, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27140640

RESUMO

Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.


Assuntos
Arabidopsis/genética , Estações do Ano , Aclimatação , Adaptação Fisiológica/genética , Clima , Mudança Climática
10.
Nucleic Acids Res ; 44(D1): D574-80, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578574

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Invertebrados/genética , Animais , Diploide , Eucariotos/genética , Variação Genética , Genoma , Poliploidia , Alinhamento de Sequência
11.
Nucleic Acids Res ; 44(D1): D710-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26687719

RESUMO

The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.


Assuntos
Bases de Dados Genéticas , Genômica , Anotação de Sequência Molecular , Animais , Genes , Variação Genética , Humanos , Internet , Camundongos , Proteínas/genética , Ratos , Sequências Reguladoras de Ácido Nucleico , Software
12.
New Phytol ; 216(1): 291-302, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28752957

RESUMO

Major alleles for seed dormancy and flowering time are well studied, and can interact to influence seasonal timing and fitness within generations. However, little is known about how this interaction controls phenology, life history, and population fitness across multiple generations in natural seasonal environments. To examine how seed dormancy and flowering time shape annual plant life cycles over multiple generations, we established naturally dispersing populations of recombinant inbred lines of Arabidopsis thaliana segregating early and late alleles for seed dormancy and flowering time in a field experiment. We recorded seasonal phenology and fitness of each genotype over 2 yr and several generations. Strong seed dormancy suppressed mid-summer germination in both early- and late-flowering genetic backgrounds. Strong dormancy and late-flowering genotypes were both necessary to confer a winter annual life history; other genotypes were rapid-cycling. Strong dormancy increased within-season fecundity in an early-flowering background, but decreased it in a late-flowering background. However, there were no detectable differences among genotypes in population growth rates. Seasonal phenology, life history, and cohort fitness over multiple generations depend strongly upon interacting genetic variation for dormancy and flowering. However, similar population growth rates across generations suggest that different life cycle genotypes can coexist in natural populations.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Flores/fisiologia , Variação Genética , Arabidopsis/crescimento & desenvolvimento , Biomassa , Genótipo , Germinação , Endogamia , Modelos Lineares , Dormência de Plantas/genética , Reprodução , Estações do Ano
13.
Nucleic Acids Res ; 43(Database issue): D662-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25352552

RESUMO

Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Animais , Epigênese Genética , Variação Genética , Genoma Humano , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Software
14.
Infant Ment Health J ; 38(3): 378-390, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28449355

RESUMO

The quality of father-child interactions has become a focus of increasing research in the field of child development. We examined the potential contribution of father-child interactions at both 3 months and 24 months to children's cognitive development at 24 months. Observational measures of father-child interactions at 3 and 24 months were used to assess the quality of fathers' parenting (n = 192). At 24 months, the Mental Developmental Index (MDI) of the Bayley Scales of Infant Development, Second Edition (N. Bayley, ) measured cognitive functioning. The association between interactions and cognitive development was examined using multiple linear regression analyses, adjusting for paternal age, education and depression, infant age, and maternal sensitivity. Children whose fathers displayed more withdrawn and depressive behaviors in father-infant interactions at 3 months scored lower on the MDI at 24 months. At 24 months, children whose fathers were more engaged and sensitive as well as those whose fathers were less controlling in their interactions scored higher on the MDI. These findings were independent of the effects of maternal sensitivity. Results indicate that father-child interactions, even from a very young age (i.e., 3 months) may influence children's cognitive development. They highlight the potential significance of interventions to promote positive parenting by fathers and policies that encourage fathers to spend more time with their young children.


Assuntos
Desenvolvimento Infantil , Relações Pai-Filho , Poder Familiar , Pré-Escolar , Cognição , Depressão , Escolaridade , Pai/psicologia , Feminino , Humanos , Lactente , Modelos Lineares , Estudos Longitudinais , Masculino , Poder Familiar/psicologia , Idade Paterna , Testes Psicológicos , Psicologia da Criança
16.
Mol Genet Genomic Med ; 9(12): e1786, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34435752

RESUMO

BACKGROUND: Variant interpretation is dependent on transcript annotation and remains time consuming and challenging. There are major obstacles for historical data reuse and for interpretation of new variants. First, both RefSeq and Ensembl/GENCODE produce transcript sets in common use, but there is currently no easy way to translate between the two. Second, the resources often used for variant interpretation (e.g. ClinVar, gnomAD, UniProt) do not use the same transcript set, nor default transcript or protein sequence. METHOD: Ensembl ran a survey in 2018 to sample attitudes to choosing one default transcript per locus, and to gather data on reference sequences used by the scientific community. This was publicised on the Ensembl and UCSC genome browsers, by email and on social media. RESULTS: The survey had 788 responses from 32 different countries, the results of which we report here. CONCLUSIONS: We present our roadmap to create an effective default set of transcripts for resources, and for reporting interpretation of clinical variants.


Assuntos
Biomarcadores , Biologia Computacional , Genômica , RNA Mensageiro/genética , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Humanos , Software , Navegador
17.
Transl Psychiatry ; 10(1): 131, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376820

RESUMO

Studies in animal models of autism spectrum disorders (ASD) suggest atypical early neural activity is a core vulnerability mechanism which alters functional connectivity and predisposes to dysmaturation of neural circuits. However, underlying biological changes associated to ASD in humans remain unclear. Results from functional connectivity studies of individuals diagnosed with ASD are highly heterogeneous, in part because of complex life-long secondary and/or compensatory events. To minimize these confounds and examine primary vulnerability mechanisms, we need to investigate very early brain development. Here, we tested the hypothesis that brain functional connectivity is altered in neonates who are vulnerable to this condition due to a family history of ASD. We acquired high temporal resolution multiband resting state functional magnetic resonance imaging (fMRI) in newborn infants with and without a first-degree relative with ASD. Differences in local functional connectivity were quantified using regional homogeneity (ReHo) analysis and long-range connectivity was assessed using distance correlation analysis. Neonates who have a first-degree relative with ASD had significantly higher ReHo within multiple resting state networks in comparison to age matched controls; there were no differences in long range connectivity. Atypical local functional activity may constitute a biomarker of vulnerability, that might precede disruptions in long range connectivity reported in older individuals diagnosed with ASD.


Assuntos
Transtorno do Espectro Autista , Idoso , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Família , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
18.
JAMA Netw Open ; 2(4): e191868, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951164

RESUMO

Importance: What is inherited or acquired in neurodevelopmental conditions such as autism spectrum disorder (ASD) is not a fixed outcome, but instead is a vulnerability to a spectrum of traits, especially social difficulties. Identifying the biological mechanisms associated with vulnerability requires looking as early in life as possible, before the brain is shaped by postnatal mechanisms and/or the experiences of living with these traits. Animal studies suggest that susceptibility to neurodevelopmental disorders arises when genetic and/or environmental risks for these conditions alter patterns of synchronous brain activity in the perinatal period, but this has never been examined in human neonates. Objective: To assess whether alternation of functional maturation of social brain circuits is associated with a family history of ASD in newborns. Design, Setting, and Participants: In this cohort study of 36 neonates with and without a family history of ASD, neonates underwent magnetic resonance imaging at St Thomas Hospital in London, England, using a dedicated neonatal brain imaging system between June 23, 2015, and August 1, 2018. Neonates with a first-degree relative with ASD (R+) and therefore vulnerable to autistic traits and neonates without a family history (R-) were recruited for the study. Synchronous neural activity in brain regions linked to social function was compared. Main Outcomes and Measures: Regions responsible for social function were selected with reference to a published meta-analysis and the level of synchronous activity within each region was used as a measure of local functional connectivity in a regional homogeneity analysis. Group differences, controlling for sex, age at birth, age at scan, and group × age interactions, were examined. Results: The final data set consisted of 18 R+ infants (13 male; median [range] postmenstrual age at scan, 42.93 [40.00-44.86] weeks) and 18 R- infants (13 male; median [range] postmenstrual age at scan, 42.50 [39.29-44.58] weeks). Neonates who were R+ had significantly higher levels of synchronous activity in the right posterior fusiform (t = 2.48; P = .04) and left parietal cortices (t = 3.96; P = .04). In addition, there was a significant group × age interaction within the anterior segment of the left insula (t = 3.03; P = .04) and cingulate cortices (right anterior: t = 3.00; P = .03; left anterior: t = 2.81; P = .03; right posterior: t = 2.77; P = .03; left posterior: t = 2.55; P = .03). In R+ infants, levels of synchronous activity decreased over 39 to 45 weeks' postmenstrual age, whereas synchronous activity levels increased in R- infants over the same period. Conclusions and Relevance: Synchronous activity is required during maturation of functionally connected networks. This study found that in newborn humans, having a first-degree relative with ASD was associated with higher levels of local functional connectivity and dysmaturation of interconnected regions responsible for processing higher-order social information.


Assuntos
Transtorno do Espectro Autista/genética , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Transtornos do Neurodesenvolvimento/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Meio Ambiente , Feminino , Neuroimagem Funcional , Humanos , Lactente , Recém-Nascido , Londres/epidemiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Metanálise como Assunto , Transtornos do Neurodesenvolvimento/epidemiologia
19.
Dev Cogn Neurosci ; 40: 100721, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704653

RESUMO

Fathers play a crucial role in their children's socio-emotional and cognitive development. A plausible intermediate phenotype underlying this association is father's impact on infant brain. However, research on the association between paternal caregiving and child brain biology is scarce, particularly during infancy. Thus, we used magnetic resonance imaging (MRI) to investigate the relationship between observed father-infant interactions, specifically paternal sensitivity, and regional brain volumes in a community sample of 3-to-6-month-old infants (N = 28). We controlled for maternal sensitivity and examined the moderating role of infant communication on this relationship. T2-weighted MR images were acquired from infants during natural sleep. Higher levels of paternal sensitivity were associated with smaller cerebellar volumes in infants with high communication levels. In contrast, paternal sensitivity was not associated with subcortical grey matter volumes in the whole sample, and this was similar in infants with both high and low communication levels. This preliminary study provides the first evidence for an association between father-child interactions and variation in infant brain anatomy.


Assuntos
Encéfalo/fisiopatologia , Relações Pai-Filho , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos Transversais , Pai , Feminino , Humanos , Lactente , Masculino
20.
Genome Biol ; 19(1): 180, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373643

RESUMO

As part of our Q&A series, Genome Biology spoke to four scientists about their personal experiences as parents in their careers to highlight the challenges of researchers having children and the support they need in this regard. Our participants also included a couple (Kristin Tessmar-Raible and Florian Raible), as we were interested to know whether both parents being active researchers can have an impact. One of our participants wishes to remain anonymous.


Assuntos
Biologia , Escolha da Profissão , Tomada de Decisões , Pais/psicologia , Pesquisadores/psicologia , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA