Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 17(1)2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26771603

RESUMO

Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Processamento de Proteína Pós-Traducional , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glicosilação , Hidroxiprolina/metabolismo , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Transporte Proteico , Protoplastos/metabolismo , Plântula/genética , Plântula/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transfecção
2.
Int J Mol Sci ; 15(2): 2517-37, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24531138

RESUMO

In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance--the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Secas , Expressão Gênica , Genes Reporter , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Estresse Oxidativo/genética , Fenótipo , Plantas Geneticamente Modificadas , Domínios e Motivos de Interação entre Proteínas , Tolerância ao Sal/genética , Plântula , Alinhamento de Sequência , Transativadores/metabolismo , Fatores de Transcrição/química , Ativação Transcricional
3.
Mycol Res ; 113(Pt 12): 1377-88, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19770041

RESUMO

The ascomycete Cadophora finlandica, which can form mycorrhizas with ectomycorrhizal and ericoid hosts, is commonly found in heavy metal polluted soils. To understand the selective advantage of this organism at contaminated sites heavy metal regulated genes from C. finlandica were investigated. For gene identification a strategy based on a genomic microarray was chosen, which allows a rapid, genome-wide screening in genetically poorly characterized organisms. In a preliminary screen eleven plasmids covering eight distinct genomic regions and encoding a total of ten Cd-regulated genes were identified. Northern analyses with RNA from C. finlandica grown in the presence of either Cd, Pb or Zn revealed different transcription patterns in response to the heavy metals present in the growth medium. The Cd-regulated genes are predicted to encode several extracellular proteins with unknown functions, transporters, a centaurin-type regulator of intracellular membrane trafficking, a GNAT-family acetyltransferase and a B-type cyclin.


Assuntos
Ascomicetos/genética , Regulação Fúngica da Expressão Gênica , Metais Pesados/farmacologia , Raízes de Plantas/microbiologia , Poluentes do Solo/farmacologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adsorção , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Biodegradação Ambiental , Cádmio/farmacologia , Biologia Computacional , Evolução Molecular , Perfilação da Expressão Gênica , Genoma Fúngico , Resíduos Industriais , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica , Micorrizas/genética , Micorrizas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA
4.
Plant Signal Behav ; 9(2): e27764, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24518841

RESUMO

Mitogen-activated protein kinases and their targets have been in the limelight of plant stress research. Signaling pathways mediating the responses to multiple stresses deserve particular attention. In a recent study, we reported AZI1, a member of the lipid transfer protein family, to play a role in MPK3-mediated responses to salt stress in Arabidopsis thaliana. MPK3 controls AZI1 at the transcriptional and posttranslational level. The AZI1 protein has several properties that make it very attractive for genetic engineering. A model of multi-level control of AZI1 by MPK3 is proposed, and strategies toward optimizing AZI1 protein properties are briefly discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Engenharia Genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética
5.
Mol Plant ; 7(4): 722-38, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24214892

RESUMO

A plant's capability to cope with environmental challenges largely relies on signal transmission through mitogen-activated protein kinase (MAPK) cascades. In Arabidopsis thaliana, MPK3 is particularly strongly associated with numerous abiotic and biotic stress responses. Identification of MPK3 substrates is a milestone towards improving stress resistance in plants. Here, we characterize AZI1, a lipid transfer protein (LTP)-related hybrid proline-rich protein (HyPRP), as a novel target of MPK3. AZI1 is phosphorylated by MPK3 in vitro. As documented by co-immunoprecipitation and bimolecular fluorescence complementation experiments, AZI1 interacts with MPK3 to form protein complexes in planta. Furthermore, null mutants of azi1 are hypersensitive to salt stress, while AZI1-overexpressing lines are markedly more tolerant. AZI1 overexpression in the mpk3 genetic background partially alleviates the salt-hypersensitive phenotype of this mutant, but functional MPK3 appears to be required for the full extent of AZI1-conferred robustness. Notably, this robustness does not come at the expense of normal development. Immunoblot and RT-PCR data point to a role of MPK3 as positive regulator of AZI1 abundance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosforilação/efeitos dos fármacos , Cloreto de Sódio/farmacologia
6.
PLoS One ; 8(2): e57547, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437396

RESUMO

Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Pressão Osmótica , Fosforilação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Serina/genética , Serina/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Methods ; 8(1): 14, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22559320

RESUMO

BACKGROUND: Transient gene expression systems are indispensable tools in molecular biology. Yet, their routine application is limited to few plant species often requiring substantial equipment and facilities. High chloroplast and chlorophyll content may further impede downstream applications of transformed cells from green plant tissue. RESULTS: Here, we describe a fast and simple technique for the high-yield isolation and efficient transformation (>70%) of mesophyll-derived protoplasts from red leaves of the perennial plant Poinsettia (Euphorbia pulccherrima). In this method no particular growth facilities or expensive equipments are needed. Poinsettia protoplasts display an astonishing robustness and can be employed in a variety of commonly-used downstream applications, such as subcellular localisation (multi-colour fluorescence) or promoter activity studies. Due to low abundance of chloroplasts or chromoplasts, problems encountered in other mesophyll-derived protoplast systems (particularly autofluorescence) are alleviated. Furthermore, the transgene expression is detectable within 90 minutes of transformation and lasts for several days. CONCLUSIONS: The simplicity of the isolation and transformation procedure renders Poinsettia protoplasts an attractive system for transient gene expression experiments, including multi-colour fluorescence, subcellular localisation and promoter activity studies. In addition, they offer hitherto unknown possibilities for anthocyan research and industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA