Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Planta ; 255(2): 40, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35038036

RESUMO

MAIN CONCLUSION: QTL hotspots identified for selected source-sink-related traits provide the opportunity for pyramiding favorable alleles for improving sorghum productivity under diverse environments. A sorghum bi-parental mapping population was evaluated under six different environments at Hays and Manhattan, Kansas, USA, in 2016 and 2017, to identify genomic regions controlling source-sink relationships. The population consisted of 210 recombinant inbred lines developed from US elite post-flowering drought susceptible (RTx430) and a known post-flowering drought tolerant cultivar (SC35). Selected physiological traits related to source (effective quantum yield of photosystem II and chlorophyll index), sink (grain yield per panicle) and panicle neck diameter were recorded during grain filling. The results showed strong phenotypic and genotypic association between panicle neck diameter and grain yield per panicle during mid-grain filling and at maturity. Multiple QTL model revealed 5-12 including 2-5 major QTL for each trait. Among them 3, 7 and 8 QTL for quantum yield, panicle neck diameter and chlorophyll index, respectively, have not been identified previously in sorghum. Phenotypic variation explained by QTL identified across target traits ranged between 5.5 and 25.4%. Panicle neck diameter and grain yield per panicle were positively associated, indicating the possibility of targeting common co-localized QTL to improve both traits simultaneously through marker-assisted selection. Three major QTL hotspots, controlling multiple traits were identified on chromosome 1 (52.23-61.18 Mb), 2 (2.52-11.43 Mb) and 3 (1.32-3.95 Mb). The identified genomic regions and underlying candidate genes can be utilized in pyramiding favorable alleles for improving source-sink relationships in sorghum under diverse environments.


Assuntos
Sorghum , Mapeamento Cromossômico , Grão Comestível/genética , Fenótipo , Locos de Características Quantitativas/genética , Sorghum/genética
2.
Plant Physiol ; 186(3): 1562-1579, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856488

RESUMO

Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.


Assuntos
Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/genética , Sorghum/crescimento & desenvolvimento , Sorghum/genética , Aprendizado Profundo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Folhas de Planta
3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281180

RESUMO

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


Assuntos
Afídeos/fisiologia , Defesa das Plantas contra Herbivoria/genética , Sorghum/genética , Animais , Suscetibilidade a Doenças , Grão Comestível/genética , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genótipo , Controle Biológico de Vetores/métodos , Melhoramento Vegetal/métodos , Sorghum/parasitologia , Transcriptoma
4.
Int J Mol Sci ; 22(15)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361052

RESUMO

Colon cancer (CC) is considered a high-risk cancer in developed countries. Its etiology is correlated with a high consumption of red meat and low consumption of plant-based foods, including whole grains. Sorghum bran is rich in polyphenols. This study aimed to determine whether different high-phenolic sorghum brans suppress tumor formation in a genetic CC rodent model and elucidate mechanisms. Tissue culture experiments used colorectal cancer cell lines SW480, HCT-116 and Caco-2 and measured protein expression, and protein activity. The animal model used in this study was APC Min+/mouse model combined with dextram sodium sulfate. High phenolic sorghum bran extract treatment resulted in the inhibition of proliferation and induced apoptosis in CC cell lines. Treatment with high phenolic sorghum bran extracts repressed TNF-α-stimulated NF-κB transactivation and IGF-1-stimulated PI3K/AKT pathway via the downregulation of ß-catenin transactivation. Furthermore, high-phenolic sorghum bran extracts activated AMPK and autophagy. Feeding with high-phenolic sorghum bran for 6 weeks significantly suppressed tumor formation in an APC Min/+ dextran sodium sulfate promoted CC mouse model. Our data demonstrates the potential application of high-phenolic sorghum bran as a functional food for the prevention of CC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Extratos Vegetais/farmacologia , Sorghum/química , Animais , Apoptose , Proliferação de Células , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Camundongos , Células Tumorais Cultivadas
5.
Plant Cell Environ ; 43(2): 448-462, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31702833

RESUMO

In sorghum (Sorghum bicolor [L.] Moench), the impact of heat stress during flowering on seed set is known, but mechanisms that lead to tolerance are not known. A diverse set of sorghum genotypes was tested under controlled environment and field conditions to ascertain the impact of heat stress on time-of-day of flowering, pollen viability, and ovarian tissue. A highly conserved early morning flowering was observed, wherein >90% of spikelets completed flowering within 30 min after dawn, both in inbreds and hybrids. A strong quantitative impact of heat stress was recorded before pollination (reduced pollen viability) and post pollination (reduced pollen tube growth and linear decline in fertility). Although viable pollen tube did reach the micropylar region, 100% spikelet sterility was recorded under 40/22°C (day/night temperatures), even in the tolerant genotype Macia. Heat stress induced significant damage to the ovarian tissue near the micropylar region, leading to highly condensed cytoplasmic contents and disintegrated nucleolus and nucleus in the susceptible genotype RTx430. Whereas, relatively less damages to ovarian cell organelles were observed in the tolerant genotype Macia under heat stress. Integrating higher tolerance in female reproductive organ will help in effective utilization of the early morning flowering mechanism to enhance sorghum productivity under current and future hotter climate.


Assuntos
Fertilidade/fisiologia , Resposta ao Choque Térmico/fisiologia , Temperatura Alta/efeitos adversos , Infertilidade , Sorghum/fisiologia , Clima , Grão Comestível/fisiologia , Genótipo , Magnoliopsida/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética , Pólen/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , Reprodução/fisiologia , Sorghum/genética , Temperatura
6.
J Exp Bot ; 70(12): 3357-3371, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949711

RESUMO

Sorghum is often exposed to suboptimal low temperature stress under field conditions, particularly at the seedling establishment stage. Enhancing chilling tolerance will facilitate earlier planting and so minimize the negative impacts of other stresses experienced at later growth stages. Genome-wide association mapping was performed on a sorghum association panel grown under control (30/20 °C; day/night) and chilling (20/10 °C) conditions. Genomic regions on chromosome 7, controlling the emergence index and seedling (root and shoot) vigor, were associated with increased chilling tolerance but they did not co-localize with undesirable tannin content quantitative trait loci (QTLs). Shoot and root samples from highly contrasting haplotype pairs expressing differential responses to chilling stress were used to identify candidate genes. Three candidate genes (an alpha/beta hydrolase domain protein, a DnaJ/Hsp40 motif-containing protein, and a YTH domain-containing RNA-binding protein) were expressed at significantly higher levels under chilling stress in the tolerant haplotype compared with the sensitive haplotype and BTx623. Moreover, two CBF/DREB1A transcription factors on chromosome 2 showed a divergent response to chilling in the contrasting haplotypes. These studies identify haplotype differences on chromosome 7 that modulate chilling tolerance by either regulating CBF or feeding back into this signaling pathway. We have identified new candidate genes that will be useful markers in ongoing efforts to develop tannin-free chilling-tolerant sorghum hybrids.


Assuntos
Temperatura Baixa , Genes de Plantas , Sorghum/genética , Estresse Fisiológico/genética , Mapeamento Cromossômico , Produção Agrícola , Marcadores Genéticos
7.
BMC Genomics ; 16: 1048, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26654432

RESUMO

BACKGROUND: Pearl millet is a staple food for people in arid and semi-arid regions of Africa and South Asia due to its high drought tolerance and nutritional qualities. A better understanding of the genomic diversity and population structure of pearl millet germplasm is needed to support germplasm conservation and genetic improvement of this crop. Here we characterized two pearl millet diversity panels, (i) a set of global accessions from Africa, Asia, and the America, and (ii) a collection of landraces from multiple agro-ecological zones in Senegal. RESULTS: We identified 83,875 single nucleotide polymorphisms (SNPs) in 500 pearl millet accessions, comprised of 252 global accessions and 248 Senegalese landraces, using genotyping by sequencing (GBS) of PstI-MspI reduced representation libraries. We used these SNPs to characterize genomic diversity and population structure among the accessions. The Senegalese landraces had the highest levels of genetic diversity (π), while accessions from southern Africa and Asia showed lower diversity levels. Principal component analyses and ancestry estimation indicated clear population structure between the Senegalese landraces and the global accessions, and among countries in the global accessions. In contrast, little population structure was observed across in the Senegalese landraces collections. We ordered SNPs on the pearl millet genetic map and observed much faster linkage disequilibrium (LD) decay in Senegalese landraces compared to global accessions. A comparison of pearl millet GBS linkage map with the foxtail millet (Setaria italica) and sorghum (Sorghum bicolor) genomes indicated extensive regions of synteny, as well as some large-scale rearrangements in the pearl millet lineage. CONCLUSIONS: We identified 83,875 SNPs as a genomic resource for pearl millet improvement. The high genetic diversity in Senegal relative to other regions of Africa and Asia supports a West African origin of this crop, followed by wide diffusion. The rapid LD decay and lack of confounding population structure along agro-ecological zones in Senegalese pearl millet will facilitate future association mapping studies. Comparative population genomics will provide insights into panicoid crop evolution and support improvement of these climate-resilient crops.


Assuntos
Técnicas de Genotipagem/métodos , Pennisetum/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , DNA de Plantas/análise , Variação Genética , Desequilíbrio de Ligação , Metagenômica , Pennisetum/classificação , Filogeografia , Análise de Componente Principal
8.
J Sci Food Agric ; 94(10): 2133-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24343522

RESUMO

BACKGROUND: The HCI-vanillin assay is a well-accepted method for determining tannin content in sorghum but is limited to small sample sets due to the time-consuming nature of the method. The objective was to develop an accurate and repeatable high-throughput 96-well plate assay for breeders to screen large sample sets of sorghum for tannin content. Validation of the high-throughput assay was tested on 25 sorghums suspected to contain tannin. RESULTS: Approximately 30 measurements per day were completed using the conventional assay compared to 224 measurements using the 96-well platform. The correlation between the two tannin assays was 0.98. The coefficient of variation (CV) was 3.54% and 3.21% for the 96-well and conventional method, respectively. The 96-well assay exhibited good repeatability, with the inter-plate CV between 2.77% and 4.85%. CONCLUSION: The high-throughput 96-well HCI-vanillin assay exhibited an eightfold increase in the number of measurements completed and was as accurate as the conventional HCI-vanillin assay.


Assuntos
Benzaldeídos/análise , Grão Comestível/química , Ensaios de Triagem em Larga Escala/métodos , Sorghum/química , Taninos/análise , Ensaios de Triagem em Larga Escala/normas , Humanos , Reprodutibilidade dos Testes , Sementes/química
9.
J Fungi (Basel) ; 10(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248970

RESUMO

Sporisorium reilianum, the causal agent of sorghum (Sorghum bicolor (L.) Moench) head smut, is present in most sorghum-producing regions. This seed replacement fungal disease can reduce yield by up to 80% in severely infected fields. Management of this disease can be challenging due to the appearance of different pathotypes within the pathogenic population. In this research, the genetic variability and pathogenicity of isolates collected from five Texas Counties was conducted. Due to the lack of available space, 21 out of 32 sequenced isolates were selected and evaluated for virulence patterns on the six sorghum differentials, Tx7078, BTx635, SC170-6-17 (TAM2571), SA281 (Early Hegari), Tx414, and BTx643. The results reveal the occurrence of a new pathotype, 1A, and four previously documented US pathotypes when the 21 isolates were evaluated for virulence patterns on the differentials. The most prevalent was pathotype 5, which was recovered from Brazos, Hidalgo, Nueces, and Willacy Counties, Texas. This pathotype was followed by 1A and 6 in frequency of recovery. Pathotype 4 was identified only from isolates collected from Hidalgo County, while pathotype 1 was from Burleson County, Texas. It appeared that the previous US head smut pathotypes (2 and 3) are no longer common, and the new pathotypes, 1A, 5, and 6, are now predominant. The phylogenetic tree constructed from the single-nucleotide polymorphism (SNP) data through the neighbor-joining method showed high genetic diversity among the tested isolates. Some of the diverse clades among the tested isolates were independent of their sampled locations. Notably, HS37, HS49, and HS65 formed a clade and were classified as 1A in the virulence study, while HS 61 and HS 66, which were collected from Nueces County, were grouped and identified as pathotype 5.

10.
Front Plant Sci ; 14: 1139896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180401

RESUMO

Genomic selection is expected to improve selection efficiency and genetic gain in breeding programs. The objective of this study was to assess the efficacy of predicting the performance of grain sorghum hybrids using genomic information of parental genotypes. One hundred and two public sorghum inbred parents were genotyped using genotyping-by-sequencing. Ninty-nine of the inbreds were crossed to three tester female parents generating a total of 204 hybrids for evaluation at two environments. The hybrids were sorted in to three sets of 77,59 and 68 and evaluated along with two commercial checks using a randomized complete block design in three replications. The sequence analysis generated 66,265 SNP markers that were used to predict the performance of 204 F1 hybrids resulted from crosses between the parents. Both additive (partial model) and additive and dominance (full model) were constructed and tested using various training population (TP) sizes and cross-validation procedures. Increasing TP size from 41 to 163 increased prediction accuracies for all traits. With the partial model, the five-fold cross validated prediction accuracies ranged from 0.03 for thousand kernel weight (TKW) to 0.58 for grain yield (GY) while it ranged from 0.06 for TKW to 0.67 for GY with the full model. The results suggest that genomic prediction could become an effective tool for predicting the performance of sorghum hybrids based on parental genotypes.

11.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232400

RESUMO

In temperate climates, earlier planting of tropical-origin crops can provide longer growing seasons, reduce water loss, suppress weeds, and escape post-flowering drought stress. However, chilling sensitivity of sorghum, a tropical-origin cereal crop, limits early planting, and over 50 years of conventional breeding has been stymied by coinheritance of chilling tolerance (CT) loci with undesirable tannin and dwarfing alleles. In this study, phenomics and genomics-enabled approaches were used for prebreeding of sorghum early-season CT. Uncrewed aircraft systems (UAS) high-throughput phenotyping platform tested for improving scalability showed moderate correlation between manual and UAS phenotyping. UAS normalized difference vegetation index values from the chilling nested association mapping population detected CT quantitative trait locus (QTL) that colocalized with manual phenotyping CT QTL. Two of the 4 first-generation Kompetitive Allele Specific PCR (KASP) molecular markers, generated using the peak QTL single nucleotide polymorphisms (SNPs), failed to function in an independent breeding program as the CT allele was common in diverse breeding lines. Population genomic fixation index analysis identified SNP CT alleles that were globally rare but common to the CT donors. Second-generation markers, generated using population genomics, were successful in tracking the donor CT allele in diverse breeding lines from 2 independent sorghum breeding programs. Marker-assisted breeding, effective in introgressing CT allele from Chinese sorghums into chilling-sensitive US elite sorghums, improved early-planted seedling performance ratings in lines with CT alleles by up to 13-24% compared to the negative control under natural chilling stress. These findings directly demonstrate the effectiveness of high-throughput phenotyping and population genomics in molecular breeding of complex adaptive traits.


Assuntos
Sorghum , Mapeamento Cromossômico , Sorghum/genética , Fenômica , Estações do Ano , Grão Comestível/genética , Melhoramento Vegetal , Genômica , Fenótipo
12.
Sci Rep ; 13(1): 21917, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38081914

RESUMO

This genome-wide association studies (GWAS) used a subset of 96 diverse sorghum accessions, constructed from a large collection of 219 accessions for mining novel genetic loci linked to major agronomic, root morphological and physiological traits. The subset yielded 43,452 high quality single nucleotide polymorphic (SNP) markers exhibiting high allelic diversity. Population stratification showed distinct separation between caudatum and durra races. Linkage disequilibrium (LD) decay was rapidly declining with increasing physical distance across all chromosomes. The initial 50% LD decay was ~ 5 Kb and background level was within ~ 80 Kb. This study detected 42 significant quantitative trait nucleotide (QTNs) for different traits evaluated using FarmCPU, SUPER and 3VmrMLM which were in proximity with candidate genes related and were co-localized in already reported quantitative trait loci (QTL) and phenotypic variance (R2) of these QTNs ranged from 3 to 20%. Haplotype validation of the candidate genes from this study resulted nine genes showing significant phenotypic difference between different haplotypes. Three novel candidate genes associated with agronomic traits were validated including Sobic.001G499000, a potassium channel tetramerization domain protein for plant height, Sobic.010G186600, a nucleoporin-related gene for dry biomass, and Sobic.002G022600 encoding AP2-like ethylene-responsive transcription factor for plant yield. Several other candidate genes were validated and associated with different root and physiological traits including Sobic.005G104100, peroxidase 13-related gene with root length, Sobic.010G043300, homologous to Traes_5BL_8D494D60C, encoding inhibitor of apoptosis with iWUE, and Sobic.010G125500, encoding zinc finger, C3HC4 type domain with Abaxial stomatal density. In this study, 3VmrMLM was more powerful than FarmCPU and SUPER for detecting QTNs and having more breeding value indicating its reliable output for validation. This study justified that the constructed subset of diverse sorghums can be used as a panel for mapping other key traits to accelerate molecular breeding in sorghum.


Assuntos
Estudo de Associação Genômica Ampla , Sorghum , Estudo de Associação Genômica Ampla/métodos , Sorghum/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Grão Comestível/genética , Nucleotídeos , Polimorfismo de Nucleotídeo Único
13.
J Fungi (Basel) ; 10(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276019

RESUMO

Anthracnose, incited by Colletotrichum sublineola, is the most destructive foliar disease of sorghum and, under severe conditions, yield losses can exceed 80% on susceptible cultivars. The hyper-variable nature of the pathogen makes its management challenging despite the occurrence of several resistant sources. In this study, the genetic variability and pathogenicity of 140 isolates of C. sublineola, which were sequenced using restriction site-associated sequencing (RAD-Seq), resulted in 1244 quality SNPs. The genetic relationship based on the SNP data showed low to high genetic diversity based on isolates' origin. Isolates from Georgia and North Carolina were grouped into multiple clusters with some level of genetic relationships to each other. Even though some isolates from Texas formed a cluster, others clustered with isolates from Puerto Rico. The isolates from Puerto Rico showed scattered distribution, indicating the diverse nature of these isolates. A population structure and cluster analysis revealed that the genetic variation was stratified into eight populations and one admixture group. The virulence pattern of 30 sequenced isolates on 18 sorghum differential lines revealed 27 new pathotypes. SC748-5, SC112-14, and Brandes were resistant to all the tested isolates, while BTx623 was susceptible to all. Line TAM428 was susceptible to all the pathotypes, except for pathotype 26. Future use of the 18 differentials employed in this study, which contains cultivars/lines which have been used in the Americas, Asia, and Africa, could allow for better characterization of C. sublineola pathotypes at a global level, thus accelerating the development of sorghum lines with stable resistance to the anthracnose pathogen.

14.
Plant Dis ; 96(12): 1775-1779, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30727292

RESUMO

Sorghum is a host to numerous Potyvirus spp. and its germplasm encompasses a wide range of infection responses to these viruses. We determined how 183 mini-core-collection sorghum germplasm accessions responded to mechanical inoculation with Maize dwarf mosaic virus (MDMV) in growth regimes in which they were maintained at 30°C followed by 16°C for 5 days. Accessions that appeared immune to MDMV in this initial screening were evaluated for their response in a similar temperature maintenance regime to mechanical inoculation with MDMV, Sugarcane mosaic virus strain MDB (SCMV-MDB), Sorghum mosaic virus (SrMV), Zea mosaic virus (ZeMV), and Kansas, Nigerian, and Australian isolates of Johnsongrass mosaic virus (JGMV-KS, -N, and -Aus, respectively). In both experiments, MDMV systemically infected all accessions except international sorghum accession number (IS) 7679 and IS 20740. These accessions also proved resistant to MDMV, SCMV-MDB, SrMV, and JGMV-N but both were susceptible to the JGMV-KS and JGMV-Aus isolates. IS 7679 but not IS 20740 was resistant to infection with ZeMV. These observations suggest that IS 7679 and IS 20740 might serve as new sources of resistance to several Potyvirus spp. that systemically infect sorghum.

15.
Nutrients ; 14(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406112

RESUMO

Obesity is one of the leading public health problems that can result in life-threatening metabolic and chronic diseases such as cardiovascular diseases, diabetes, and cancer. Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop in the world and certain genotypes of sorghum have high polyphenol content. PI570481, SC84, and commercially available sumac sorghum are high-polyphenol genotypes that have demonstrated strong anti-cancer activities in previous studies. The objective of this study was to explore a potential anti-obesity use of extracts from sorghum bran in the differentiation of 3T3-L1 preadipocytes and to investigate cellular and molecular responses in differentiated adipocytes to elucidate related mechanisms. None of the four different sorghum bran extracts (PI570481, SC84, Sumac, and white sorghum as a low-polyphenol control) caused cytotoxicity in undifferentiated and differentiated 3T3-L1 cells at doses used in this study. Sorghum bran extracts (PI570481, SC84, and Sumac) reduced intracellular lipid accumulation and expression of adipogenic and lipogenic proteins in a dose-dependent manner in differentiated 3T3-L1 cells. The same polyphenol containing sorghum bran extracts also repressed production of reactive oxygen species (ROS) and MAPK signaling pathways and repressed insulin signaling and glucose uptake in differentiated 3T3-L1 cells. These data propose a potential use of high-phenolic sorghum bran for the prevention of obesity.


Assuntos
Sorghum , Células 3T3-L1 , Adipócitos/metabolismo , Adipogenia , Animais , Grão Comestível , Camundongos , Obesidade/metabolismo , Fenóis/metabolismo , Fenóis/farmacologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/metabolismo , Polifenóis/farmacologia
16.
Plant Dis ; 95(5): 523-529, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-30731955

RESUMO

Head smut, caused by the fungal pathogen Sporisorium reilianum, has been reported with increasing frequency in the grain sorghum growing areas of Texas. To facilitate analysis of changes in pathogen virulence, four inoculation techniques were examined: soil and teliospore mixture, seed coating, media placement, and syringe injection. Of the four, syringe injection was determined to be the most effective. Inoculations of sorghum host differentials BTx643, BTx7078, BTx635, SC170-6-17 (TAM2571), SA281 (Early Hegari), and Tx414 showed 23 of 32 Texas isolates were race 4. Two isolates from College Station, TX, were classified as race 1, but no race 2 or 3 isolates were found. New, virulent races 5 and 6 were identified among isolates from south Texas. Using 16 amplified fragment length polymorphism (AFLP) primer combinations, genetic diversity was assessed in DNA samples from 49 S. reilianum isolates, including 44 sorghum isolates from Texas, two from Uganda, and one from Mali; and two maize isolates from Mexico. Single-base extensions with EcoRI and MseI primers in the selective amplification increased the number of informative polymorphic bands. High genetic dissimilarity (50%) was observed between isolates originating from maize and those originating from sorghum. The resultant dendrogram, made using cluster analysis, grouped the Texas S. reilianum isolates into four small clusters with ≥82% similarity. Other than for two race 6 isolates from Weslaco, TX, no evidence for geographical or other restrictions on gene flow was evident.

17.
Front Genet ; 12: 722519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456979

RESUMO

Gene expression was analyzed at 0- and 24-h post-inoculation of two inbred sorghum cultivars known to differ in response to inoculation with Colletotrichum sublineola, the fungal pathogen that causes anthracnose. QL3 is reported to have quantitative resistance, while Theis is susceptible to most pathotypes of the pathogen; RNASeq identified over 3,000 specific genes in both cultivars as showing significant changes in expression following inoculation; in all but one gene, the changes in QL3 and Thies were in the same direction. Many other genes showed significant changes in only one of the two cultivars. Overall, more genes were downregulated than upregulated. Differences in changes in expression levels of a few genes suggested potential roles for the difference in disease response between QL3 and Theis, but did not identify known resistance genes. Gene ontology (GO) and pathway enrichment analysis identified upregulation of 23 transcription factor encoding genes as well as genes involved in the production of secondary metabolites, which are part of a typical host defense reaction.

18.
Antioxidants (Basel) ; 10(10)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34679645

RESUMO

Sorghum is one of the most important food and feed cereal crops and has been gaining industrial importance in recent years for its biofuel, nutraceutical and antioxidant values. A genetic profile variation study was undertaken for the accumulation of phytochemicals in 61 diverse sorghum accessions differing in their growth habitat and grain color through non-targeted Gas Chromatography-Mass Spectrometry (GC-MS/MS) analysis. Mass Spectrometry-Data Independent AnaLysis (MS-DIAL) and MetaboAnalyst identified 221 metabolites belonging to 27 different phytochemicals. Tropical and temperate sorghums were distinct in their metabolic profiles with minimum overlaps, and 51 different metabolites were crucial in differentiating the two groups. Temperate sorghums had the ability to accumulate more of phenolic acids, phytosterols, flavonoids, carotenoids, and tropical sorghums for stress-related amino acids, sugars and fatty acids. Grain-color-based Partial Least Square-Discriminant Analysis (PLS-DA) analysis identified 94 Variable Importance in Projections (VIP) metabolites containing majority of flavonoids, phenylpropanoids and phytosterols. This study identified two sorghum lines (IS 7748 and IS 14861) with rich amounts of antioxidants (catechins and epicatechins) belonging to the group of condensed tannins that otherwise do not accumulate commonly in sorghum. Out of 13 metabolic pathways identified, flavonoid biosynthesis showed the highest expression. This study provided new opportunities for developing biofortified sorghum with enhanced nutraceutical and therapeutics through molecular breeding and metabolic engineering.

19.
Foods ; 10(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062914

RESUMO

Phenolic compounds in some specialty sorghums have been associated with cancer prevention. However, direct evidence and the underlying mechanisms for this are mostly unknown. In this study, phenolics were extracted from 13 selected sorghum accessions with black pericarp while F10000 hybrid with white pericarp was used as a control, and cell growth inhibition was studied in hepatocarcinoma HepG2 and colorectal adenocarcinoma Caco-2 cells. Total phenolic contents of the 13 high phenolic grains, as determined by Folin-Ciocalteu, were 30-64 mg GAE/g DW in the phenolic extracts of various accessions compared with the control F10000 at 2 mg GAE/g DW. Treatment of HepG2 with the extracted phenolics at 0-200 µM GAE up to 72 h resulted in a dose- and time-dependent reduction in cell numbers. The values of IC50 varied from 85 to 221 mg DW/mL while the control of F10000 was 1275 mg DW/mL. The underlying mechanisms were further examined using the highest phenolic content of PI329694 and the lowest IC50 of PI570481, resulting in a non-cytotoxic decrease in cell number that was significantly correlated with increased cell cycle arrest at G2/M and apoptotic cells in both HepG2 and Caco-2 cells. Taken together, these results indicated, for the first time, that inhibition of either HepG2 or Caco-2 cell growth by phenolic extracts from 13 selected sorghum accessions was due to cytostatic and apoptotic but not cytotoxic mechanisms, suggesting some specialty sorghums are a valuable, functional food, providing sustainable phenolics for potential cancer prevention.

20.
Antibiotics (Basel) ; 10(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067596

RESUMO

Antimicrobial resistance in bacterial pathogens associated with bovine mastitis and human foodborne illnesses from contaminated food and water have an impact on animal and human health. Phenolic compounds have antimicrobial properties and some specialty sorghum grains are high in phenolic compounds, and the grain extract may have the potential as a natural antimicrobial alternative. The study's objective was to determine antimicrobial effects of sorghum phenolic extract on bacterial pathogens that cause bovine mastitis and human foodborne illnesses. Bacterial pathogens tested included Escherichia coli, Salmonella Typhimurium, Campylobacter jejuni, Campylobacter coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca, Staphylococcus aureus, and Enterococcus faecalis. Antibacterial activities of sorghum phenolic extracts were determined by agar-well diffusion assay. Sorghum phenolic extract was added to the wells in concentrations of 0, 100, 200, 500, 1000, or 4000 µg/mL. The control wells did not receive phenolic extract. Plates were incubated for 18-24 h, and the diameter of each zone of inhibition was measured. The results indicated that sorghum phenolic extract had inhibitory effects on Staphylococcus aureus, Enterococcus faecalis, Campylobacter jejuni, and Campylobacter coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA