RESUMO
In response to the pressing global challenge of antibiotic resistance, time efficient design and synthesis of novel antibiotics are of immense need. Polycyclic polyprenylated acylphloroglucinols (PPAP) were previously reported to effectively combat a range of gram-positive bacteria. Although the exact mode of action is still not clear, we conceptualized a late-stage divergent synthesis approach to expand our natural product-based PPAP library by 30 additional entities to perform SAR studies against methicillin-resistant Staphylococcus aureus (MRSA). Although at this point only data from cellular assays are available and understanding of molecular drug-target interactions are lacking, the experimental data were used to generate 3D-QSAR models via an artificial intelligence training and to identify a common pharmacophore model. The experimentally validated QSAR model enabled the estimation of anti-MRSA activities of a virtual compound library consisting of more than 100,000 in-silico generated B PPAPs, out of which the 20 most promising candidates were synthesized. These novel PPAPs revealed significantly improved cellular activities against MRSA with growth inhibition down to concentrations less than 1â µm.
Assuntos
Antibacterianos , Produtos Biológicos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Floroglucinol , Relação Quantitativa Estrutura-Atividade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Floroglucinol/química , Floroglucinol/farmacologia , Floroglucinol/síntese química , Desenho de Fármacos , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Compostos Policíclicos/síntese químicaRESUMO
Polycyclic polyprenylated acylphloroglucinols (PPAPs) comprise a large group of compounds of mostly plant origin. The best-known compound is hyperforin from St. John's wort with its antidepressant, antitumor and antimicrobial properties. The chemical synthesis of PPAP variants allows the generation of compounds with improved activity and compatibility. Here, we studied the antimicrobial activity of two synthetic PPAP-derivatives, the water-insoluble PPAP23 and the water-soluble sodium salt PPAP53. In vitro, both compounds exhibited good activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium. Both compounds had no adverse effects on Galleria mellonella wax moth larvae. However, they were unable to protect the larvae from infection with S. aureus because components of the larval coelom neutralized the antimicrobial activity; a similar effect was also seen with serum albumin. In silico docking studies with PPAP53 revealed that it binds to the F1 pocket of human serum albumin with a binding energy of -7.5 kcal/mol. In an infection model of septic arthritis, PPAP23 decreased the formation of abscesses and S. aureus load in kidneys; in a mouse skin abscess model, topical treatment with PPAP53 reduced S. aureus counts. Both PPAPs were active against anaerobic Gram-positive gut bacteria such as neurotransmitter-producing Clostridium, Enterococcus or Ruminococcus species. Based on these results, we foresee possible applications in the decolonization of pathogens.
Assuntos
Cetonas , Staphylococcus aureus Resistente à Meticilina , Compostos de Espiro , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecium/efeitos dos fármacos , Cetonas/química , Cetonas/farmacologia , Larva/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mariposas/efeitos dos fármacos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Infecções Estafilocócicas/tratamento farmacológicoRESUMO
Selective modulation of TRPC6 ion channels is a promising therapeutic approach for neurodegenerative diseases and depression. A significant advancement showcases the selective activation of TRPC6 through metalated type-B PPAP, termed PPAP53. This success stems from PPAP53's 1,3-diketone motif facilitating metal coordination. PPAP53 is water-soluble and as potent as hyperforin, the gold standard in this field. In contrast to type-A, type-B PPAPs offer advantages such as gram-scale synthesis, easy derivatization, and long-term stability. Our investigations reveal PPAP53 selectively binding to the C-terminus of TRPC6. Although cryoelectron microscopy has resolved the majority of the TRPC6 structure, the binding site in the C-terminus remained unresolved. To address this issue, we employed state-of-the-art artificial-intelligence-based protein structure prediction algorithms to predict the missing region. Our computational results, validated against experimental data, indicate that PPAP53 binds to the 777LLKL780-region of the C-terminus, thus providing critical insights into the binding mechanism of PPAP53.
Assuntos
Canais de Cátion TRPC , Sítios de Ligação , Microscopia Crioeletrônica , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/efeitos dos fármacos , Floroglucinol/farmacologia , Compostos Policíclicos/farmacologiaRESUMO
Pre-SARS-CoV-2, tuberculosis was the leading cause of death by a single pathogen. Repetitive exposure of Mycobacterium tuberculosis(Mtb) supported the development of multidrug- and extensively drug-resistant strains, demanding novel drugs. Hyperforin, a natural type A polyprenylated polycyclic acylphloroglucinol from St. John's wort, exhibits antidepressant and antibacterial effects also against Mtb. Yet, Hyperforin's instability limits the utility in clinical practice. Here, we present photo- and bench-stable type B PPAPs with enhanced antimycobacterial efficacy. PPAP22 emerged as a lead compound, further improved as the sodium salt PPAP53, drastically enhancing solubility. PPAP53 inhibits the growth of virulent extracellular and intracellular Mtb without harming primary human macrophages. Importantly, PPAP53 is active against drug-resistant strains of Mtb. Furthermore, we analyzed the in vitro properties of PPAP53 in terms of CYP induction and the PXR interaction. Taken together, we introduce type PPAPs as a new class of antimycobacterial compounds, with remarkable antibacterial activity and favorable biophysical properties.