Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Cell ; 139(4): 679-92, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914164

RESUMO

Signaling proteins driving the proliferation of stem and progenitor cells are often encoded by proto-oncogenes. EphB receptors represent a rare exception; they promote cell proliferation in the intestinal epithelium and function as tumor suppressors by controlling cell migration and inhibiting invasive growth. We show that cell migration and proliferation are controlled independently by the receptor EphB2. EphB2 regulated cell positioning is kinase-independent and mediated via phosphatidylinositol 3-kinase, whereas EphB2 tyrosine kinase activity regulates cell proliferation through an Abl-cyclin D1 pathway. Cyclin D1 regulation becomes uncoupled from EphB signaling during the progression from adenoma to colon carcinoma in humans, allowing continued proliferation with invasive growth. The dissociation of EphB2 signaling pathways enables the selective inhibition of the mitogenic effect without affecting the tumor suppressor function and identifies a pharmacological strategy to suppress adenoma growth.


Assuntos
Receptor EphB2/metabolismo , Transdução de Sinais , Animais , Movimento Celular , Proliferação de Células , Ciclina D1/metabolismo , Epitélio , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Células-Tronco/citologia
2.
Breast Cancer Res ; 23(1): 11, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33485378

RESUMO

BACKGROUND: Triple-negative breast cancer (BCa) (TNBC) is a deadly form of human BCa with limited treatment options and poor prognosis. In our prior analysis of over 2200 breast cancer samples, the G protein-coupled receptor CCR5 was expressed in > 95% of TNBC samples. A humanized monoclonal antibody to CCR5 (leronlimab), used in the treatment of HIV-infected patients, has shown minimal side effects in large patient populations. METHODS: A humanized monoclonal antibody to CCR5, leronlimab, was used for the first time in tissue culture and in mice to determine binding characteristics to human breast cancer cells, intracellular signaling, and impact on (i) metastasis prevention and (ii) impact on established metastasis. RESULTS: Herein, leronlimab was shown to bind CCR5 in multiple breast cancer cell lines. Binding of leronlimab to CCR5 reduced ligand-induced Ca+ 2 signaling, invasion of TNBC into Matrigel, and transwell migration. Leronlimab enhanced the BCa cell killing of the BCa chemotherapy reagent, doxorubicin. In xenografts conducted with Nu/Nu mice, leronlimab reduced lung metastasis of the TNBC cell line, MB-MDA-231, by > 98% at 6 weeks. Treatment with leronlimab reduced the metastatic tumor burden of established TNBC lung metastasis. CONCLUSIONS: The safety profile of leronlimab, together with strong preclinical evidence to both prevent and reduce established breast cancer metastasis herein, suggests studies of clinical efficacy may be warranted.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Antagonistas dos Receptores CCR5/farmacologia , Morte Celular/genética , Dano ao DNA/efeitos dos fármacos , Anticorpos Anti-HIV/farmacologia , Animais , Neoplasias da Mama , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Blood ; 133(7): 743-753, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30504459

RESUMO

Tissue-type plasminogen activator (tPA) is a major mediator of fibrinolysis and, thereby, prevents excessive coagulation without compromising hemostasis. Studies on tPA regulation have focused on its acute local release by vascular cells in response to injury or other stimuli. However, very little is known about sources, regulation, and fibrinolytic function of noninjury-induced systemic plasma tPA. We explore the role and regulation of hepatocyte-derived tPA as a source of basal plasma tPA activity and as a contributor to fibrinolysis after vascular injury. We show that hepatocyte tPA is downregulated by a pathway in which the corepressor DACH1 represses ATF6, which is an inducer of the tPA gene Plat Hepatocyte-DACH1-knockout mice show increases in liver Plat, circulating tPA, fibrinolytic activity, bleeding time, and time to thrombosis, which are reversed by silencing hepatocyte Plat Conversely, hepatocyte-ATF6-knockout mice show decreases in these parameters. The inverse correlation between DACH1 and ATF6/PLAT is conserved in human liver. These findings reveal a regulated pathway in hepatocytes that contributes to basal circulating levels of tPA and to fibrinolysis after vascular injury.


Assuntos
Fator 6 Ativador da Transcrição/fisiologia , Proteínas do Olho/fisiologia , Fibrinólise/fisiologia , Hepatócitos/patologia , Trombose/patologia , Ativador de Plasminogênio Tecidual/farmacologia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Hepatócitos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tecidual/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923334

RESUMO

The mechanisms governing therapeutic resistance of the most aggressive and lethal primary brain tumor in adults, glioblastoma, have increasingly focused on tumor stem cells. These cells, protected by the periarteriolar hypoxic GSC niche, contribute to the poor efficacy of standard of care treatment of glioblastoma. Integrated proteogenomic and metabolomic analyses of glioblastoma tissues and single cells have revealed insights into the complex heterogeneity of glioblastoma and stromal cells, comprising its tumor microenvironment (TME). An additional factor, which isdriving poor therapy response is the distinct genetic drivers in each patient's tumor, providing the rationale for a more individualized or personalized approach to treatment. We recently reported that the G protein-coupled receptor CCR5, which contributes to stem cell expansion in other cancers, is overexpressed in glioblastoma cells. Overexpression of the CCR5 ligand CCL5 (RANTES) in glioblastoma completes a potential autocrine activation loop to promote tumor proliferation and invasion. CCL5 was not expressed in glioblastoma stem cells, suggesting a need for paracrine activation of CCR5 signaling by the stromal cells. TME-associated immune cells, such as resident microglia, infiltrating macrophages, T cells, and mesenchymal stem cells, possibly release CCR5 ligands, providing heterologous signaling between stromal and glioblastoma stem cells. Herein, we review current therapies for glioblastoma, the role of CCR5 in other cancers, and the potential role for CCR5 inhibitors in the treatment of glioblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Receptores CCR5/química , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451122

RESUMO

BACKGROUND: The androgen receptor (AR) plays a key role in normal prostate homeostasis and in prostate cancer (PCa) development, while the role of aromatase (Cyp19a1) is still unclear. We evaluated the effects of a treatment with Tadalafil (TAD) on both these proteins. METHODS: Androgen-sensitive human PCa cell line (LnCAP) was incubated with/without TAD (10-6 M) and bicalutamide (BCT) (10-4 M) to evaluate a potential modulation on cell proliferation, protein and mRNA expression of Cyp19a, AR and estrogen receptor-ß (ERß), respectively. RESULTS: TAD increased early AR nuclear translocation (p < 0.05, after 15 min of exposure), and increased AR transcriptional activity (p < 0.05) and protein expression (p < 0.05) after 24 h. Moreover, after 24 h this treatment upregulated Cyp19a1 and ERß mRNA (p < 0.05 and p < 0.005 respectively) and led to an increase in protein expression of both after 48 h (p < 0.05). Interestingly, TAD counteracted Cyp19a1 stimulation induced by BCT (p < 0.05) but did not alter the effect induced by BCT on the AR protein expression. CONCLUSION: We demonstrate for the first time that TAD can significantly modulate AR expression and activity, Cyp19a1 and ERß expression in PCa cells, suggesting a specific effect of these proteins. In addition, TAD potentiates the antiproliferative activity of BCT, opening a new clinical scenario in the treatment of PCa.


Assuntos
Hormônios/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroides/metabolismo , Tadalafila/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Transporte Proteico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
6.
Clin Sci (Lond) ; 134(7): 791-805, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32219337

RESUMO

The molecular mechanisms governing the secretion of the non-coding genome are poorly understood. We show herein that cyclin D1, the regulatory subunit of the cyclin-dependent kinase that drives cell-cycle progression, governs the secretion and relative proportion of secreted non-coding RNA subtypes (miRNA, rRNA, tRNA, CDBox, scRNA, HAcaBox. scaRNA, piRNA) in human breast cancer. Cyclin D1 induced the secretion of miRNA governing the tumor immune response and oncogenic miRNAs. miR-21 and miR-93, which bind Toll-Like Receptor 8 to trigger a pro-metastatic inflammatory response, represented >85% of the cyclin D1-induced secreted miRNA transcripts. Furthermore, cyclin D1 regulated secretion of the P-element Induced WImpy testis (PIWI)-interacting RNAs (piRNAs) including piR-016658 and piR-016975 that governed stem cell expansion, and increased the abundance of the PIWI member of the Argonaute family, piwil2 in ERα positive breast cancer. The cyclin D1-mediated secretion of pro-tumorigenic immuno-miRs and piRNAs may contribute to tumor initiation and progression.


Assuntos
Neoplasias da Mama/metabolismo , Ciclina D1/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Microambiente Celular , Ciclina D1/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Transdução de Sinais
7.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545571

RESUMO

The chemokine CCL5/RANTES is a versatile inflammatory mediator, which interacts with the receptor CCR5, promoting cancer cell interactions within the tumor microenvironment. Glioblastoma is a highly invasive tumor, in which CCL5 expression correlates with shorter patient survival. Using immunohistochemistry, we identified CCL5 and CCR5 in a series of glioblastoma samples and cells, including glioblastoma stem cells. CCL5 and CCR5 gene expression were significantly higher in a cohort of 38 glioblastoma samples, compared to low-grade glioma and non-cancerous tissues. The in vitro invasion of patients-derived primary glioblastoma cells and glioblastoma stem cells was dependent on CCL5-induced CCR5 signaling and is strongly inhibited by the small molecule CCR5 antagonist maraviroc. Invasion of these cells, which was enhanced when co-cultured with mesenchymal stem cells (MSCs), was inhibited by maraviroc, suggesting that MSCs release CCR5 ligands. In support of this model, we detected CCL5 and CCR5 in MSC monocultures and glioblastoma-associated MSC in tissue sections. We also found CCR5 expressing macrophages were in close proximity to glioblastoma cells. In conclusion, autocrine and paracrine cross-talk in glioblastoma and, in particular, glioblastoma stem cells with its stromal microenvironment, involves CCR5 and CCL5, contributing to glioblastoma invasion, suggesting the CCL5/CCR5 axis as a potential therapeutic target that can be targeted with repositioned drug maraviroc.


Assuntos
Neoplasias Encefálicas/patologia , Quimiocina CCL5/metabolismo , Glioblastoma/patologia , Receptores CCR5/metabolismo , Regulação para Cima , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Maraviroc/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Gradação de Tumores , Invasividade Neoplásica , Receptores CCR5/genética , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral , Regulação para Cima/efeitos dos fármacos
8.
EMBO J ; 34(23): 2953-70, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26492917

RESUMO

The EglN2/PHD1 prolyl hydroxylase is an important oxygen sensor contributing to breast tumorigenesis. Emerging studies suggest that there is functional cross talk between oxygen sensing and mitochondrial function, both of which play an essential role for sustained tumor growth. However, the potential link between EglN2 and mitochondrial function remains largely undefined. Here, we show that EglN2 depletion decreases mitochondrial respiration in breast cancer under normoxia and hypoxia, which correlates with decreased mitochondrial DNA in a HIF1/2α-independent manner. Integrative analyses of gene expression profile and genomewide binding of EglN2 under hypoxic conditions reveal nuclear respiratory factor 1 (NRF1) motif enrichment in EglN2-activated genes, suggesting NRF1 as an EglN2 binding partner. Mechanistically, by forming an activator complex with PGC1α and NRF1 on chromatin, EglN2 promotes the transcription of ferridoxin reductase (FDXR) and maintains mitochondrial function. In addition, FDXR, as one of effectors for EglN2, contributes to breast tumorigenesis in vitro and in vivo. Our findings suggest that EglN2 regulates mitochondrial function in ERα-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Fator 1 Relacionado a NF-E2/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ligação Proteica , Fatores de Transcrição/genética
9.
Chin J Cancer Res ; 30(3): 351-363, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30046229

RESUMO

OBJECTIVE: Menage a trois 1 (MAT1) is a targeting subunit of cyclin-dependent kinase-activating kinase and general transcription factor IIH kinase, which modulates cell cycle, transcription and DNA repair. Its dysregulation is responsible for diseases including cancers. To further explore the role of MAT1 in breast cancer, we investigated the pathways in which MAT1 might be involved, the association between MAT1 and molecular subtypes, and the role of MAT1 in clinical outcomes of breast cancer patients. METHODS: We conducted immunohistochemistry staining on tissue microarray and immunofluorescence staining on sections of MAT1 stable breast cancer cells. Also, we performed Kyoto Encyclopedia of Genes and Genomes pathway analysis, correlation analysis and prognosis analysis on public databases. RESULTS: MAT1 was involved in multiple pathways including normal physiology signaling and disease-related signaling. Furthermore, MAT1 positively correlated with the protein status of estrogen receptor and progesterone receptor, and was enriched in luminal-type and human epidermal growth factor receptor 2-enriched breast cancer in comparison with basal-like subtype at both mRNA and protein levels. Correlation analysis revealed significant association between MAT1 mRNA amount and epithelial markers, mesenchymal markers, cancer stem cell markers, apoptosis markers, transcription markers and oncogenes. Consistently, the results of immunofluorescence stain indicated that MAT1 overexpression enhanced the protein abundance of epidermal growth factor receptor, vimentin, sex determining region Y-box 2 and sine oculis homeobox homolog 1. Importantly, Kaplan-Meier Plotter analysis reflected that MAT1 could serve as a prognostic biomarker predicting worse relapse-free survival and metastasis-free survival. CONCLUSIONS: MAT1 is correlated with molecular subtypes and is associated with unfavorable prognosis for breast cancer patients.

10.
Breast Cancer Res ; 18(1): 55, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220421

RESUMO

Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Determining the role of cancer stem cell metabolism in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards discovering clinical targets.


Assuntos
Metabolismo Energético , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Feminino , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Microambiente Tumoral/imunologia
11.
Am J Pathol ; 185(1): 266-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25529796

RESUMO

Prostatic intraepithelial neoplasia is a precursor to prostate cancer. Herein, deletion of the NAD(+)-dependent histone deacetylase Sirt1 induced histological features of prostatic intraepithelial neoplasia at 7 months of age; these features were associated with increased cell proliferation and enhanced mitophagy. In human prostate cancer, lower Sirt1 expression in the luminal epithelium was associated with poor prognosis. Genetic deletion of Sirt1 increased mitochondrial superoxide dismutase 2 (Sod2) acetylation of lysine residue 68, thereby enhancing reactive oxygen species (ROS) production and reducing SOD2 activity. The PARK2 gene, which has several features of a tumor suppressor, encodes an E3 ubiquitin ligase that participates in removal of damaged mitochondria via mitophagy. Increased ROS in Sirt1(-/-) cells enhanced the recruitment of Park2 to the mitochondria, inducing mitophagy. Sirt1 restoration inhibited PARK2 translocation and ROS production requiring the Sirt1 catalytic domain. Thus, the NAD(+)-dependent inhibition of SOD2 activity and ROS by SIRT1 provides a gatekeeper function to reduce PARK2-mediated mitophagy and aberrant cell survival.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Mitofagia , Neoplasia Prostática Intraepitelial/metabolismo , Sirtuína 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células 3T3 , Animais , Sobrevivência Celular , Genótipo , Histona Desacetilases/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Estresse Oxidativo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
12.
Exp Cell Res ; 331(1): 1-10, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25499972

RESUMO

We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of ß-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer.


Assuntos
Movimento Celular , Regulação para Baixo , Proteína de Morte Celular Associada a bcl/metabolismo , Western Blotting , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Transição Epitelial-Mesenquimal , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Células MCF-7 , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Células Tumorais Cultivadas , Proteína de Morte Celular Associada a bcl/antagonistas & inibidores , beta Catenina/genética , beta Catenina/metabolismo
13.
Breast Cancer Res Treat ; 146(1): 41-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24863696

RESUMO

Caloric restriction (CR) has been shown to cause tumor regression in models of triple-negative breast cancer (TNBC), and the regression is augmented when coupled with ionizing radiation (IR). In this study, we sought to determine if the molecular interaction between CR and IR could be mediated by microRNA (miR). miR arrays revealed 3 miRs in the miR-17~92 cluster as most significantly down regulated when CR is combined with IR. In vivo, CR and IR down regulated miR-17/20 in 2 TNBC models. To elucidate the mechanism by which this cluster regulates the response to CR, cDNA arrays were performed and the top 5 statistically significant gene ontology terms with high fold changes were all associated with extracellular matrix (ECM) and metastases. In silico analysis revealed 4 potential targets of the miR-17~92 cluster related to ECM: collagen 4 alpha 3, laminin alpha 3, and metallopeptidase inhibitors 2 and 3, which were confirmed by luciferase assays. The overexpression or silencing of miR-17/20a demonstrated that those miRs directly affected the ECM proteins. Furthermore, we found that CR-mediated inhibition of miR-17/20a can regulate the expression of ECM proteins. Functionally, we demonstrate that CR decreases the metastatic potential of cells which further demonstrates the importance of the ECM. In conclusion, CR can be used as a potential treatment for cancer because it may alter many molecular targets concurrently and decrease metastatic potential for TNBC.


Assuntos
MicroRNAs/genética , Família Multigênica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Sequência de Bases , Sítios de Ligação , Restrição Calórica , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , MicroRNAs/química , Metástase Neoplásica , RNA Mensageiro/química , RNA Mensageiro/genética , Radiação Ionizante , Alinhamento de Sequência , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Am J Pathol ; 183(1): 3-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23790801

RESUMO

Cyclins encode regulatory subunits of holoenzymes that phosphorylate a variety of cellular substrates. Although the classic role of cyclins in cell cycle progression and tumorigenesis has been well characterized, new functions have been identified, including the induction of cellular migration and invasion, enhancement of angiogenesis, inhibition of mitochondrial metabolism, regulation of transcription factor signaling via a DNA-bound form, the induction of chromosomal instability, enhancement of DNA damage sensing and DNA damage repair, and feedback governing expression of the noncoding genome. This review describes the mechanisms of these new functions of cyclin D1.


Assuntos
Ciclina D1/fisiologia , Animais , Ciclo Celular/fisiologia , Instabilidade Cromossômica/fisiologia , Reparo do DNA/fisiologia , Regulação da Expressão Gênica , Humanos , Camundongos , Mitocôndrias/metabolismo
15.
Am J Pathol ; 182(3): 992-1004, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23267770

RESUMO

Caveolin-1 (Cav1) is a scaffolding protein that serves to regulate the activity of several signaling molecules. Its loss has been implicated in the pathogenesis of several types of cancer, but its role in the development and progression of cutaneous squamous cell carcinoma (cSCC) remains largely unexplored. Herein, we use the keratinocyte cell line PAM212, a murine model of cSCC, to determine the function of Cav1 in skin tumor biology. We first show that Cav1 overexpression decreases cell and tumor growth, whereas Cav1 knockdown increases these attributes in PAM212 cells. In addition, Cav1 knockdown increases the invasive ability and incidence of spontaneous lymph node metastasis. Finally, we demonstrate that Cav1 knockdown increases extracellular signaling-related kinase 1/2 mitogen-activated protein kinase/activator protein-1 pathway activation. We attribute the growth and invasive advantage conferred by Cav1 knockdown to increased expression of activator protein-1 transcriptional targets, including cyclin D1 and keratin 18, which show inverse expression in PAM212 based on the expression level of Cav1. In summary, we demonstrate that loss of Cav1 affects several characteristics associated with aggressive human skin tumors and that this protein may be an important modulator of tumor growth and invasion in cSCC.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Caveolina 1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia , Fator de Transcrição AP-1/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Queratina-18/metabolismo , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Soro
16.
Cell Tissue Res ; 358(3): 821-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25322709

RESUMO

Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 (-/-) Apoe (-/-) mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 (+/+) Apoe (-/-) or Cav-1 (-/-) Apoe (-/-) mice and vice versa. We found that Cav-1 (+/+) mice harboring Cav-1 (-/-) BM-derived macrophages developed significantly larger lesions than Cav-1 (+/+) mice harboring Cav-1 (+/+) BM-derived macrophages. Cav-1 (-/-) macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.


Assuntos
Aterosclerose/patologia , Caveolina 1/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Animais , Apoptose/efeitos dos fármacos , Aterosclerose/sangue , Transplante de Medula Óssea , Caveolina 1/deficiência , Citocinas/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipoproteínas/sangue , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos
17.
Molecules ; 19(6): 7122-37, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24886939

RESUMO

The miR-221/222 cluster has been demonstrated to function as oncomiR in human cancers. miR-221/222 promotes epithelial-to-mesenchymal transition (EMT) and confers tamoxifen resistance in breast cancer. However, the effects and mechanisms by which miR-221/222 regulates breast cancer aggressiveness remain unclear. Here we detected a much higher expression of miR-221/222 in highly invasive basal-like breast cancer (BLBC) cells than that in non-invasive luminal cells. A microRNA dataset from breast cancer patients indicated an elevated expression of miR-221/222 in BLBC subtype. S-phase entry of the cell cycle was associated with the induction of miR-221/222 expression. miRNA inhibitors specially targeting miR-221 or miR-222 both significantly suppressed cellular migration, invasion and G1/S transition of the cell cycle in BLBC cell types. Proteomic analysis demonstrated the down-regulation of two tumor suppressor genes, suppressor of cytokine signaling 1 (SOCS1) and cyclin-dependent kinase inhibit 1B (CDKN1B), by miR-221/222. This is the first report to reveal miR-221/222 regulation of G1/S transition of the cell cycle. These findings demonstrate that miR-221/222 contribute to the aggressiveness in control of BLBC.


Assuntos
Neoplasias da Mama/metabolismo , Ciclo Celular/fisiologia , Movimento Celular/fisiologia , MicroRNAs/metabolismo , Fase S/fisiologia , Neoplasias da Mama/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , MicroRNAs/genética , Fase S/genética
18.
Oncogenesis ; 13(1): 4, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191593

RESUMO

The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.

19.
Oncologist ; 18(1): 97-103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299773

RESUMO

Calorie restriction (CR), or a diet modification aiming to reduce the total intake of calories by 20%-40%, has been shown to increase longevity across multiple species. Recently, there has been growing interest in investigating the potential role of CR as a treatment intervention for age-related diseases, such as cancer, because an increasing body of literature has demonstrated a metabolic component to both carcinogenesis and tumor progression. In fact, many of the molecular pathways that are altered with CR are also known to be altered in cancer. Therefore, manipulation of these pathways using CR can render cancer cells, and most notably breast cancer cells, more susceptible to standard cytotoxic treatment with radiation and chemotherapy. In this review article we demonstrate the laboratory and clinical evidence that exists for CR and show compelling evidence through the molecular pathways CR induces about how it may be used as a treatment in tandem with radiation therapy to improve our rates of disease control.


Assuntos
Restrição Calórica/métodos , Redes e Vias Metabólicas , Neoplasias/dietoterapia , Neoplasias/radioterapia , Ensaios Clínicos como Assunto , Ingestão de Alimentos/fisiologia , Ingestão de Energia/fisiologia , Humanos , Longevidade/fisiologia , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Neoplasias/metabolismo , Neoplasias/fisiopatologia
20.
Am J Pathol ; 181(1): 278-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22698676

RESUMO

Increasing chronological age is the most significant risk factor for human cancer development. To examine the effects of host aging on mammary tumor growth, we used caveolin (Cav)-1 knockout mice as a bona fide model of accelerated host aging. Mammary tumor cells were orthotopically implanted into these distinct microenvironments (Cav-1(+/+) versus Cav-1(-/-) age-matched young female mice). Mammary tumors grown in a Cav-1-deficient tumor microenvironment have an increased stromal content, with vimentin-positive myofibroblasts (a marker associated with oxidative stress) that are also positive for S6-kinase activation (a marker associated with aging). Mammary tumors grown in a Cav-1-deficient tumor microenvironment were more than fivefold larger than tumors grown in a wild-type microenvironment. Thus, a Cav-1-deficient tumor microenvironment provides a fertile soil for breast cancer tumor growth. Interestingly, the mammary tumor-promoting effects of a Cav-1-deficient microenvironment were estrogen and progesterone independent. In this context, chemoprevention was achieved by using the mammalian target of rapamycin (mTOR) inhibitor and anti-aging drug, rapamycin. Systemic rapamycin treatment of mammary tumors grown in a Cav-1-deficient microenvironment significantly inhibited their tumor growth, decreased their stromal content, and reduced the levels of both vimentin and phospho-S6 in Cav-1-deficient cancer-associated fibroblasts. Since stromal loss of Cav-1 is a marker of a lethal tumor microenvironment in breast tumors, these high-risk patients might benefit from treatment with mTOR inhibitors, such as rapamycin or other rapamycin-related compounds (rapalogues).


Assuntos
Envelhecimento/fisiologia , Anticarcinógenos/uso terapêutico , Caveolina 1/fisiologia , Neoplasias Mamárias Animais/prevenção & controle , Sirolimo/uso terapêutico , Animais , Caveolina 1/deficiência , Feminino , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/fisiopatologia , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Ovariectomia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais/fisiologia , Células Estromais/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA