Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7839): 616-619, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33361792

RESUMO

At the interface of classical and quantum physics, the Maxwell and Schrödinger equations describe how optical fields drive and control electronic phenomena to enable lightwave electronics at terahertz or petahertz frequencies and on ultrasmall scales1-5. The electric field of light striking a metal interacts with electrons and generates light-matter quasiparticles, such as excitons6 or plasmons7, on an attosecond timescale. Here we create and image a quasiparticle of topological plasmonic spin texture in a structured silver film. The spin angular momentum components of linearly polarized light interacting with an Archimedean coupling structure with a designed geometric phase generate plasmonic waves with different orbital angular momenta. These plasmonic fields undergo spin-orbit interaction and their superposition generates an array of plasmonic vortices. Three of these vortices can form spin textures that carry non-trivial topological charge8 resembling magnetic meron quasiparticles9. These spin textures are localized within a half-wavelength of light, and exist on the timescale of the plasmonic field. We use ultrafast nonlinear coherent photoelectron microscopy to generate attosecond videos of the spatial evolution of the vortex fields; electromagnetic simulations and analytic theory confirm the presence of plasmonic meron quasiparticles. The quasiparticles form a chiral field, which breaks the time-reversal symmetry on a nanometre spatial scale and a 20-femtosecond timescale (the 'nano-femto scale'). This transient creation of non-trivial spin angular momentum topology pertains to cosmological structure creation and topological phase transitions in quantum matter10-12, and may transduce quantum information on the nano-femto scale13,14.

2.
Proc Natl Acad Sci U S A ; 120(47): e2307671120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956295

RESUMO

The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose-Einstein condensation, and light-energy harvesting. Anatase TiO2 with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe-Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron-phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron-hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright-dark exciton transitions sheds insights into applications of anatase TiO2 in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors.

3.
Chem Rev ; 120(13): 6247-6287, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530607

RESUMO

Plasmonics is a rapidly growing field spanning research and applications across chemistry, physics, optics, energy harvesting, and medicine. Ultrafast photoemission electron microscopy (PEEM) has demonstrated unprecedented power in the characterization of surface plasmons and other electronic excitations, as it uniquely combines the requisite spatial and temporal resolution, making it ideally suited for 3D space and time coherent imaging of the dynamical plasmonic phenomena on the nanofemto scale. The ability to visualize plasmonic fields evolving at the local speed of light on subwavelength scale with optical phase resolution illuminates old phenomena and opens new directions for growth of plasmonics research. In this review, we guide the reader thorough experimental description of PEEM as a characterization tool for both surface plasmon polaritons and localized plasmons and summarize the exciting progress it has opened by the ultrafast imaging of plasmonic phenomena on the nanofemto scale.

4.
J Chem Phys ; 152(5): 054201, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035439

RESUMO

Nanoscale plasmonic field enhancement at sub-wavelength metallic particles is crucial for surface sensitive spectroscopy, ultrafast microscopy, and nanoscale energy transduction. Here, we demonstrate control of the spatial distribution of localized surface plasmon modes at sub-optical-wavelength crystalline silver (Ag) micropyramids grown on a Si(001) surface. We employ multiphoton photoemission electron microscopy (mP-PEEM) to image how the plasmonic field distributions vary with the photon energy, light polarization, and phase in coherent two-pulse excitation. For photon energy hυ > 2.0 eV, the mP-PEEM images show single photoemission locus, which splits into a dipolar pattern that straddles the Ag crystal at a lower energy. We attribute the variation to the migration of plasmon resonances from the Ag/vacuum to the Ag/Si interfaces by choice of the photon energy. Furthermore, the dipolar response of the Ag/Si interface follows the polarization state of light: for linearly polarized excitations, the plasmon dipole follows the in-plane electric field vector, while for circularly polarized excitations, it tilts in the direction of the handedness due to the conversion of spin angular momentum of light into orbital angular momentum of the plasmons excited in the sample. Finally, we show the coherent control of the spatial plasmon distribution by exciting the sample with two identical circularly polarized light pulses with delay defined with attosecond precision. The near field distribution wobbles at the pyramid base as the pump-probe delay is advanced due to interferences among the contributing fields. We illustrate how the frequency, polarization, and pulse structure can be used to design and control plasmon fields on the nanofemto scale for applications in chemistry and physics.

5.
J Am Chem Soc ; 141(10): 4438-4444, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779554

RESUMO

Alkali atoms are known to promote or poison surface catalytic chemistry. To explore alkali promotion of catalysis and to characterize discharge species in alkali-oxygen batteries, we examine coadsorption of K and O2 on Au(111) surface at the atomic scale by scanning tunneling microscopy (STM) and density functional theory (DFT). On a clean Au(111) surface, O2 molecules may weakly physisorb, but when Au(111) is decorated with K+ ions, they chemisorb into structures that depend on the adsorbate concentrations and substrate templating. At low K coverages, an ordered quantum lattice of K2O2 complexes forms through intramolecular attractive and intermolecule repulsive interactions. For higher K and O2 coverages, the K2O2 complexes condense first into triangular islands, which further coalesce into rhombohedral islands, and ultimately into incommensurate films. No structures display internal contrast possibly because of high structural mutability. DFT calculations explain the alkali-promoted coadsorption in terms of three center, cation-π interactions where pairs of K+ coordinate the π-orbitals on each side of O2 molecules, and in addition O2 forms a covalent bond to Au(111) surface. The K promoted adsorption of O2 is catalyzed by charge transfer from K atoms to Au(111) substrate and ultimately to O2 molecules, forming O2-δ in a redox state between the peroxo and superoxo. Tunneling d I/d V spectra of K2O2 complexes exhibit inordinately intense inelastic progression involving excitation of the O-O stretching vibration, but absence of a Kondo effect suggests that the magnetic moment of O2 is quenched.

6.
Phys Rev Lett ; 123(1): 017404, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386417

RESUMO

Photons can excite collective and single-particle excitations in metals; the collective plasmonic excitations are of keen interest in physics, chemistry, optics, and nanotechnology because they enhance coupling of electromagnetic energy and can drive nonlinear processes in electronic materials, particularly where their dielectric function ϵ(ω) approaches zero. We investigate the nonlinear angle-resolved two-photon photoemission (2PP) spectroscopy of the Ag(111) surface through the ϵ(ω) near-zero region. In addition to the Einsteinian single-particle photoemission, the 2PP spectra report unequivocal signatures of nonlocal dielectric, plasmonically enhanced, excitation processes.

7.
Phys Rev Lett ; 120(12): 126801, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694071

RESUMO

Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.

8.
Nano Lett ; 17(10): 6435-6442, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28914539

RESUMO

The van der Waals (vdW) interfaces of two-dimensional (2D) semiconductor are central to new device concepts and emerging technologies in light-electricity transduction where the efficient charge separation is a key factor. Contrary to general expectation, efficient electron-hole separation can occur in vertically stacked transition-metal dichalcogenide heterostructure bilayers through ultrafast charge transfer between the neighboring layers despite their weak vdW bonding. In this report, we show by ab initio nonadiabatic molecular dynamics calculations, that instead of direct tunneling, the ultrafast interlayer hole transfer is strongly promoted by an adiabatic mechanism through phonon excitation occurring on 20 fs, which is in good agreement with the experiment. The atomic level picture of the phonon-assisted ultrafast mechanism revealed in our study is valuable both for the fundamental understanding of ultrafast charge carrier dynamics at vdW heterointerfaces as well as for the design of novel quasi-2D devices for optoelectronic and photovoltaic applications.

9.
J Am Chem Soc ; 139(17): 6160-6168, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402118

RESUMO

Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.

10.
J Am Chem Soc ; 138(41): 13740-13749, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27656768

RESUMO

Photogenerated charge carrier dynamics near molecule/TiO2 interfaces are important for the photocatalytic and photovoltaic processes. To understand this fundamental aspect, we performed a time-domain ab initio nonadiabatic molecular dynamics study of the photogenerated hole dynamics at the CH3OH/rutile TiO2(110) interface. We studied the forward and reverse hole transfer between TiO2 and CH3OH as well as the hole energy relaxation to the valence band maximum. First, we show that the hole-trapping ability of CH3OH depends strongly on the adsorption structure. Only when the CH3OH is deprotonated to form chemisorbed CH3O will ∼15% of the hole be trapped by the molecule. Second, we find that strong fluctuations of the HOMO energies of the adsorbed molecules induced by electron-phonon coupling provide additional channels, which accelerate the hole energy relaxation. Third, we demonstrate that the charge transfer and energy relaxation processes depend significantly on temperature. When the temperature decreases from 100 to 30 K, the forward hole transfer and energy relaxation processes are strongly suppressed because of the reduction of phonon occupation. These results indicate that the molecule/TiO2 energy level alignment, thermal excitation of a phonon, and electron-phonon coupling are the key factors that determine the photogenerated hole dynamics. Our studies provide valuable insights into the photogenerated charge and energy transfer dynamics at molecule/semiconductor interfaces.

12.
Opt Lett ; 39(3): 693-6, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487901

RESUMO

This Letter reports a nonlinear directional waveguide coupler written by ultrafast laser in gallium lanthanum sulfide chalcogenide glass. The nonlinear waveguide device is tested with laser pulses input in two orthogonal polarizations, and all optical switching at 1040 nm between the two coupled waveguides is observed at a peak fluence of 16 GW/cm2. The spectra and autocorrelation measurement from the waveguide outputs show dominant nonlinear effects and negligible dispersion for light propagation in both channels.

13.
J Phys Chem A ; 118(35): 7255-60, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24401149

RESUMO

Nearly free electron (NFE) states with density maxima in nonnuclear (NN) voids may have remarkable electron transport properties ranging from suppressed electron-phonon interaction to Wigner crystallization. Such NFE states, however, usually exist near the vacuum level, which makes them unsuitable for transport. Through first principles calculations on nanocomposites consisting of carbon nanotube (CNT) arrays sandwiched between boron nitride (BN) sheets, we describe a stratagem for stabilizing the NN-NFE states to below the Fermi level. By doping the CNTs with negative charge, we establish Coulomb barriers at CNTs walls that, together with the insulating BN sheets, define the transverse potentials of one-dimensional (1D) transport channels, which support the NN-NFE states.

14.
J Am Chem Soc ; 135(31): 11429-32, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23865780

RESUMO

Photocatalytic activity depends on the optimal alignment of electronic levels at the molecule-semiconductor interface. Establishing the level alignment experimentally is complicated by the uncertain chemical identity of the surface species. We address the assignment of the occupied and empty electronic levels for the prototypical photocatalytic system consisting of methanol on a rutile TiO2(110) surface. Using many-body quasiparticle (QP) techniques, we show that the frontier levels measured in UV photoelectron and two-photon photoemission spectroscopy experiments can be assigned to molecularly chemisorbed methanol rather than its dissociated product, the methoxy species. We find that the highest occupied molecular orbital of the methoxy species is much closer to the valence band maximum, suggesting why it is more photocatalytically active than the methanol molecule. We develop a general semiquantitative model for predicting many-body QP energies based on the electronic screening within the bulk, molecular, or vacuum regions of the wave functions at molecule-semiconductor interfaces.


Assuntos
Metanol/química , Titânio/química , Catálise , Elétrons , Modelos Moleculares , Processos Fotoquímicos , Espectroscopia Fotoeletrônica , Semicondutores , Propriedades de Superfície
15.
Annu Rev Phys Chem ; 63: 201-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22404595

RESUMO

By low-temperature scanning tunneling microscopy, we study CO molecule chemisorption on a quasi-one-dimensional Cu(110)-(2×1)-O surface. Atom-resolved images reveal how the interaction of CO with the surface Cu-O- chains gives rise to orthogonal attractive and repulsive intermolecular interactions. First-principles calculations show that CO molecules induce unprecedented lifting of the host Cu atoms by 1 Å from the Cu-O- chains, enabling the Cu-CO unit to tilt by 45° from the surface normal. Contrary to the behavior of CO on metal surfaces, this structural distortion enables unprecedented, orthogonal, short-range intermolecular dipole-dipole attraction and long-range, surface-mediated repulsion. These interactions lead to self-assembly into molecular nanograting structures consisting of arrays of single-molecule-wide CO rows. The origin of the novel behavior of CO molecules in the electronic and geometrical properties of the quasi-one-dimensional substrate suggests that similar molecule-molecule and molecule-substrate interactions could play an important role at catalytic sites on reactive surfaces.

16.
Adv Mater ; 35(24): e2300572, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37057612

RESUMO

After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D-EFBs) in twisted vdW bilayers. However, the realization of 1D-EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D-EFBs is reported in an untwisted in situ-grown two atomic-layer Bi(110) superlattice self-aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi-Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along the ZZ direction in each Bi(110)-11 × 11 supercell. A series of 1D-EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states along ZZ due to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D-EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers.

18.
Acc Chem Res ; 44(5): 360-8, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21413734

RESUMO

Electronic and optical properties of molecules and molecular solids are traditionally considered from the perspective of the frontier orbitals and their intermolecular interactions. How molecules condense into crystalline solids, however, is mainly attributed to the long-range polarization interaction. In this Account, we show that long-range polarization also introduces a distinctive set of diffuse molecular electronic states, which in quantum structures or solids can combine into nearly-free-electron (NFE) bands. These NFE properties, which are usually associated with good metals, are vividly evident in sp(2) hybridized carbon materials, specifically graphene and its derivatives. The polarization interaction is primarily manifested in the screening of an external charge at a solid/vacuum interface. It is responsible for the universal image potential and the associated unoccupied image potential (IP) states, which are observed even at the He liquid/vacuum interface. The molecular electronic properties that we describe are derived from the IP states of graphene, which float above and below the molecular plane and undergo free motion parallel to it. Rolling or wrapping a graphene sheet into a nanotube or a fullerene transforms the IP states into diffuse atom-like orbitals that are bound primarily to hollow molecular cores, rather than the component atoms. Therefore, we named them the superatom molecular orbitals (SAMOs). Like the excitonic states of semiconductor nanostructures or the plasmonic resonances of metallic nanoparticles, SAMOs of fullerene molecules, separated by their van der Waals distance, can combine to form diatomic molecule-like orbitals of C(60) dimers. For larger aggregates, they form NFE bands of superatomic quantum structures and solids. The overlap of the diffuse SAMO wavefunctions in van der Waals solids provides a different paradigm for band formation than the valence or conduction bands formed by interaction of the more tightly bound, directional highest occupied molecular orbitals (HOMOs) or the lowest unoccupied molecular orbitals (LUMOs). Therefore, SAMO wavefunctions provide insights into the design of molecular materials with potentially superior properties for electronics. Physicists and chemists have thought of fullerenes as atom-like building blocks of electronic materials, and superatom properties have been attributed to other elemental gas-phase clusters based on their size-dependent electronic structure and reactivity. Only in the case of fullerenes, however, do the superatom properties survive as delocalized electronic bands even in the condensed phase. We emphasize, however, that the superatom states and their bands are usually unoccupied and therefore do not contribute to intermolecular bonding. Instead, their significance lies in the electronic properties they confer when electrons are introduced, such as when they are excited optically or probed by the atomically sharp tip of a scanning tunneling microscope. We describe the IP states of graphene as the primary manifestation of the universal polarization response of a molecular sheet and how these states in turn define the NFE properties of materials derived from graphene, such as graphite, fullerenes, and nanotubes. Through low-temperature scanning tunneling microscopy (LT-STM), time-resolved two-photon photoemission spectroscopy (TR-2PP), and density functional theory (DFT), we describe the real and reciprocal space electronic properties of SAMOs for single C(60) molecules and their self-assembled 1D and 2D quantum structures on single-crystal metal surfaces.

19.
Phys Rev Lett ; 109(26): 266802, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368598

RESUMO

By scanning tunneling microscopy and spectroscopy, we study nearly free electron band formation of the σ* lowest unoccupied molecular orbital of C6F6 on a Cu(111) surface. In fractal islands, the lowest unoccupied molecular orbital energy systematically stabilizes with the number of interacting near-neighbor C6F6 molecules. Density functional theory calculations reveal the origin of effective intermolecular orbital overlap in the previously unrecognized superatom character of the σ* orbital of C6F6 molecules. The discovery of superatom orbitals in planar molecules offers a new universal principle for effective band formation, which can be exploited in designing organic semiconductors with nearly free electron properties.

20.
J Chem Phys ; 137(9): 091704, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22957546

RESUMO

In this essay we discuss the light-matter interactions at molecule-covered metal surfaces that initiate surface photochemistry. The hot-electron mechanism for surface photochemistry, whereby the absorption of light by a metal surface creates an electron-hole pair, and the hot electron scatters through an unoccupied resonance of adsorbate to initiate nuclear dynamics leading to photochemistry, has become widely accepted. Yet, ultrafast spectroscopic measurements of molecule-surface electronic structure and photoexcitation dynamics provide scant support for the hot electron mechanism. Instead, in most cases the adsorbate resonances are excited through photoinduced substrate-to-adsorbate charge transfer. Based on recent studies of the role of coherence in adsorbate photoexcitation, as measured by the optical phase and momentum resolved two-photon photoemission measurements, we examine critically the hot electron mechanism, and propose an alternative description based on direct charge transfer of electrons from the substrate to adsorbate. The advantage of this more quantum mechanically rigorous description is that it informs how material properties of the substrate and adsorbate, as well as their interaction, influence the frequency dependent probability of photoexcitation and ultimately how light can be used to probe and control surface femtochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA