Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Inflamm Res ; 72(3): 577-588, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36658268

RESUMO

INTRODUCTION: Chronic inflammatory lung diseases are a common cause of suffering and death. Chronic obstructive pulmonary disease (COPD) is the reason for 6% of all deaths worldwide. A total of 262 million people are affected by asthma and 461,000 people died in 2019. Idiopathic pulmonary fibrosis (IPF) is diagnosed in 3 million people worldwide, with an onset over the age of 50 with a mean survival of only 24-30 months. These three diseases have in common that remodeling of the lung tissue takes place, which is responsible for an irreversible decline of lung function. Pathological lung remodeling is mediated by a complex interaction of different, often misguided, repair processes regulated by a variety of mediators. One group of these, as has recently become known, are the Wnt ligands. In addition to their well-characterized role in embryogenesis, this group of glycoproteins is also involved in immunological and structural repair processes. Depending on the combination of the Wnt ligand with its receptors and co-receptors, canonical and noncanonical signaling cascades can be induced. Wnt5A is a mediator that is described mainly in noncanonical Wnt signaling and has been shown to play an important role in different inflammatory diseases and malignancies. OBJECTIVES: In this review, we summarize the literature available regarding the role of Wnt5A as an immune modulator and its role in the development of asthma, COPD and IPF. We will focus specifically on what is known about Wnt5A concerning its role in the remodeling processes involved in the chronification of the diseases. CONCLUSION: Wnt5A has been shown to be involved in all three inflammatory lung diseases. Since the ligand affects both structural and immunological processes, it is an interesting target for the treatment of lung diseases whose pathology involves a restructuring of the lung tissue triggered in part by an inflammatory immune response.


Assuntos
Asma , Fibrose Pulmonar Idiopática , Doença Pulmonar Obstrutiva Crônica , Humanos , Pré-Escolar , Ligantes , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Asma/patologia , Doença Crônica , Proteína Wnt-5a
2.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L450-L463, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35972838

RESUMO

The enzyme, nitric oxide-sensitive guanylyl cyclase (NO-GC), is activated by binding NO to its prosthetic heme group and catalyzes the formation of cGMP. The NO-GC is primarily known to mediate vascular smooth muscle relaxation in the lung, and inhaled NO has been successfully used as a selective pulmonary vasodilator. In comparison, NO-GC's impact on the regulation of airway tone is less acknowledged and, most importantly, little is known about the issue that NO-GC signaling is accomplished by two isoforms: NO-GC1 and NO-GC2, implying the existence of distinct "cGMP pools." Herein, we investigated the functional role of the NO-GC isoforms in respiration by measuring lung function parameters of isoform-specific knockout (KO) mice using noninvasive and invasive techniques. Our data revealed the participation and ongoing influence of NO-GC1-derived cGMP in the regulation of airway tone by showing that respiratory resistance was enhanced in NO-GC1-KOs and increased more pronouncedly after the challenge with the bronchoconstrictor methacholine. The tissue resistance and stiffness of NO-GC1-KOs were also higher because of narrowed airways that cause tissue distortion. Contrariwise, NO-GC2-KOs displayed reduced tissue elasticity, elastic recoil, and airway reactivity to methacholine, which did not even increase in an ovalbumin model of asthma that induced hyperresponsiveness in NO-GC1-KOs. In addition, conscious NO-GC2-KOs showed a higher breathing rate with a shorter duration of inspiration and expiration time, which remained faster even in the presence of bronchoconstrictors that slow down breathing. Thus, we provide evidence of two distinct NO/cGMP pathways in airways, accomplished by either NO-GC1 or NO-GC2, adjusting differentially the airway reactivity.


Assuntos
Broncoconstritores , Guanilato Ciclase , Animais , GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Heme , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Ovalbumina , Isoformas de Proteínas/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Vasodilatadores
3.
Mol Med ; 28(1): 150, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503361

RESUMO

BACKGROUND: Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are lacking. Alveolar macrophages are central in the progression of these diseases by releasing proinflammatory cytokines, making them promising targets for new therapeutic approaches. Extra nasal expressed olfactory receptors (ORs) mediate various cellular processes, but clinical data are lacking. This work investigates whether ORs in human primary alveolar macrophages could impact pathophysiological processes and could be considered as therapeutic targets. METHODS: Human primary alveolar macrophages were isolated from bronchoalveolar lavages of 50 patients with pulmonary diseases. The expression of ORs was validated using RT-PCR, immunocytochemical staining, and Western blot. Changes in intracellular calcium levels were analyzed in real-time by calcium imaging. A luminescent assay was used to measure the cAMP concentration after OR stimulation. Cytokine secretion was measured in cell supernatants 24 h after stimulation by ELISA. Phagocytic ability was measured by the uptake of fluorescent-labeled beads by flow cytometry. RESULTS: We demonstrated the expression of functional OR2AT4 and OR1A2 on mRNA and protein levels. Both ORs were primarily located in the plasma membrane. Stimulation with Sandalore, the ligand of OR2AT4, and Citronellal, the ligand of OR1A2, triggered a transient increase of intracellular calcium and cAMP. In the case of Sandalore, this calcium increase was based on a cAMP-dependent signaling pathway. Stimulation of alveolar macrophages with Sandalore and Citronellal reduced phagocytic capacity and release of proinflammatory cytokines. CONCLUSION: These are the first indications for utilizing olfactory receptors as therapeutic target molecules in treating steroid-resistant lung diseases with non-type 2 inflammation.


Assuntos
Pneumopatias , Receptores Odorantes , Humanos , Cálcio/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Ligantes , Pneumopatias/metabolismo , Macrófagos Alveolares/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Esteroides
4.
Int Arch Allergy Immunol ; 183(7): 714-725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35193134

RESUMO

Different endotypes of asthma were described in human. Atopic asthma is a T-helper 2 (Th2)-mediated disease consisting mainly of an eosinophilic inflammation in the airways. Other endotypes show neutrophilic inflammation of the airways that is probably based on a Th17 response. There are several mouse models described in the literature to study the Th2 polarized eosinophilic disease, however, only a few models are available which characterize the neutrophilic endotype. The aim of this study was to compare both endotypes in relation to the severity of the allergen-induced inflammation. Groups of either Balb/c or DO11.10 mice were sensitized with ovalbumin (OVA) adsorbed to aluminum hydroxide. Mice were subsequently challenged with OVA for different periods of time. They were evaluated for airway hyperreactivity (AHR), cytokine production, airway inflammation, and remodeling of the airways. As expected, Balb/c mice developed a Th2 response with AHR, eosinophilic airway inflammation, and allergen-specific IgE and IgG1. By contrast DO11.10 mice showed a mixed Th1/Th17 response with strong neutrophilic airway inflammation, IgG2a, but only limited induction of AHR. While Balb/c mice showed remodeling of the airways with subepithelial fibrosis and goblet cell metaplasia, airway remodeling in DO11.10 mice was marginal. Both airway inflammation and remodeling resolved after prolonged periods of challenge in both models. In conclusion, strong allergen-induced airway remodeling in mice seems to be triggered by the specific conditions arising from infiltration with eosinophilic granulocytes in the lung. A Th1/Th17 response leading to neutrophilic inflammation does not seem to be sufficient to induce pronounced airway remodeling.


Assuntos
Remodelação das Vias Aéreas , Asma , Alérgenos/efeitos adversos , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Células Th2
5.
Clin Exp Allergy ; 51(11): 1471-1481, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33550702

RESUMO

BACKGROUND: Asthma is an inflammatory disease of the respiratory system, and a major factor of increasing health care costs worldwide. The molecular actors leading to the development of chronic asthma are not fully understood and require further investigation. OBJECTIVE: The aim of this study was to monitor the proteome dynamics during asthma development from early inflammatory to late fibrotic stages. METHODS: A mouse asthma model was used to analyse the lung proteome at four time points during asthma development (0 weeks = control, 5, 8 and 12 weeks of treatment, n = 6 each). The model was analysed using lung function tests, immune cell counting and histology. Furthermore, a multi-fraction mass spectrometry-based proteome analysis was performed to achieve a comprehensive coverage and quantification of the lung proteome. RESULTS: At early stages, the mice showed predominant eosinophilic inflammation of the airways, which disappeared at later stages and was replaced by marked airway hyper-reactivity and fibrosis of the airways. 3325 proteins were quantified with 435 proteins found to be significantly differentially abundant between the experimental groups (ANOVA p-value ≤.05, maximum fold change ≥1.5). We applied hierarchical clustering to identify common protein abundance profiles along the asthma development and analysed these clusters using gene ontology annotation and enrichment analysis. We demonstrate the correlation of protein clusters with the course of asthma development, that is eosinophilic inflammation and fibrotic remodelling of the airways. CONCLUSIONS AND CLINICAL RELEVANCE: Proteome analysis revealed proteins that were previously described to be important during asthma chronification. Moreover, we identified additional proteins previously not described in the context of asthma. We provide a comprehensive data set of a long-term mouse model of asthma that may contribute to a better understanding and allow new insights into the progression and development of chronic asthma. Data are available via ProteomeXchange with identifier PXD011159.


Assuntos
Asma , Proteoma , Animais , Modelos Animais de Doenças , Ontologia Genética , Humanos , Pulmão , Camundongos
6.
Chemistry ; 27(3): 928-933, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32579239

RESUMO

Arabinogalactan, a microheterogeneous polysaccharide occurring in plants, is known for its allergy-protective activity, which could potentially be used for preventive allergy treatment. New treatment options are highly desirable, especially in a preventive manner, due to the constant rise of atopic diseases worldwide. The structural origin of the allergy-protective activity of arabinogalactan is, however, still unclear and isolation of the polysaccharide is not feasible for pharmaceutical applications due to a variation of the activity of the natural product and contaminations with endotoxins. Therefore, a pentasaccharide partial structure was selected for total synthesis and subsequently coupled to a carrier protein to form a neoglycoconjugate. The allergy-protective activity of arabinogalactan could be reproduced with the partial structure in subsequent in vivo experiments. This is the first example of a successful simplification of arabinogalactan with a single partial structure while retaining its allergy-preventive potential.

7.
FASEB J ; 33(2): 1711-1726, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188757

RESUMO

Sphingosine-1-phosphate (S1P) is involved in the regulation of important cellular processes, including immune-cell trafficking and proliferation. Altered S1P signaling is strongly associated with inflammation, cancer progression, and atherosclerosis; however, the mechanisms underlying its pathophysiologic effects are only partially understood. This study evaluated the effects of S1P in vitro and in vivo on the biosynthesis of leukotrienes (LTs), which form a class of lipid mediators involved in the pathogenesis of inflammatory diseases. Here, we report for the first time that S1P potently suppresses LT biosynthesis in Ca2+-ionophore-stimulated intact human neutrophils. S1P treatment resulted in intracellular Ca2+ mobilization, perinuclear translocation, and finally irreversible suicide inactivation of the LT biosynthesis key enzyme 5-lipoxygenase (5-LO). Agonist studies and S1P receptor mRNA expression analysis provided evidence for a S1P receptor 4-mediated effect, which was confirmed by a functional knockout of S1P4 in HL60 cells. Systemic administration of S1P in wild-type mice decreased both macrophage and neutrophil migration in the lungs in response to LPS and significantly attenuated 5-LO product formation, whereas these effects were abrogated in 5-LO or S1P4 knockout mice. In summary, targeting the 5-LO pathway is an important mechanism to explain S1P-mediated pathophysiologic effects. Furthermore, agonism at S1P4 represents a novel effective strategy in pharmacotherapy of inflammation.-Fettel, J., Kühn, B., Guillen, N. A., Sürün, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnütgen, F., Meyer zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J., Maier, T. J. Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity.


Assuntos
Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Linhagem Celular , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Pneumonia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Esfingosina/farmacologia , Especificidade por Substrato
8.
J Immunol ; 196(4): 1626-35, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26746190

RESUMO

Arabinogalactan (AG) isolated from dust of a traditional farm prevents disease in murine models of allergy. However, it is unclear whether this polysaccharide has immune regulatory properties in humans. The aim of this study was to test the influence of AG on the immune-stimulating properties of human dendritic cells (DCs). Moreover, we sought to identify the receptor to which AG binds. AG was produced from plant callus tissue under sterile conditions to avoid the influence of pathogen-associated molecular patterns in subsequent experiments. The influence of AG on the human immune system was investigated by analyzing its impact on monocyte-derived DCs. To analyze whether the T cell stimulatory capacity of AG-stimulated DCs is altered, an MLR with naive Th cells was performed. We revealed that AG reduced T cell proliferation in a human MLR. In the search for a molecular mechanism, we found that AG binds to the immune modulatory receptors DC-specific ICAM-3 -: grabbing non integrin (DC-SIGN) and macrophage mannose receptor 1 (MMR-1). Stimulation of these receptors with AG simultaneously with TLR4 stimulation with LPS increased the expression of the E3 ubiquitin-protein ligase tripartite motif -: containing protein 21 and decreased the phosphorylation of NF-κB p65 in DCs. This led to a reduced activation profile with reduced costimulatory molecules and proinflammatory cytokine production. Blocking of MMR-1 or DC-SIGN with neutralizing Abs partially inhibits this effect. We conclude that AG dampens the activation of human DCs by LPS via binding to DC-SIGN and MMR-1, leading to attenuated TLR signaling. This results in a reduced T cell activation capacity of DCs.


Assuntos
Células Dendríticas/imunologia , Galactanos/imunologia , Lectinas Tipo C/imunologia , Ativação Linfocitária/imunologia , NF-kappa B/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Galactanos/farmacologia , Humanos , Hipersensibilidade/imunologia , Ativação Linfocitária/efeitos dos fármacos , Teste de Cultura Mista de Linfócitos , Transdução de Sinais/imunologia
9.
Am J Respir Cell Mol Biol ; 54(3): 350-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26222011

RESUMO

We showed previously that sensitization of mice with dendritic cells (DCs) via the airways depends on activation of these cells with LPS. Allergen-pulsed DCs that were stimulated with low doses of LPS induce a strong Th2 response in vivo. Our objective was to investigate whether airway sensitization of mice by the application of DCs with a phenotype that is able to induce Th17 cells results in increased remodeling of the airways. We generated DCs from the bone marrow of mice and pulsed them with LPS-free ovalbumin. Subsequently, cells were activated with LPS with or without ATP for inflammasome activation. The activated cells were used to sensitize mice via the airways. Intranasal instillation of DCs that were activated with 0.1 ng/ml LPS induced a Th2 response with airway eosinophilia. High doses of LPS, particularly when given in combination with ATP, led to induction of a mixed Th2/Th17 response. Interestingly, we found a correlation between IL-17A production and the remodeling of the airways. Stimulation of mouse fibroblasts with purified IL-17A protein in vitro resulted in transforming growth factor-ß1 secretion and collagen transcription. Interestingly, we found enhanced secretion of transforming growth factor-ß1 by fibroblasts after costimulation with IL-17A and the profibrotic factor wingless-type MMTV integration site family, member 5A (Wnt5a). We showed that an allergen-specific Th17 response in the airway is accompanied by increased airway remodeling. Furthermore, we revealed that increased remodeling is not only based on neutrophilic inflammation, but also on the direct impact of IL-17A on airway structural cells.


Assuntos
Remodelação das Vias Aéreas , Alérgenos , Asma/imunologia , Células Dendríticas/transplante , Interleucina-17/imunologia , Pulmão/imunologia , Ovalbumina/imunologia , Células Th17/imunologia , Trifosfato de Adenosina/farmacologia , Animais , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Células Cultivadas , Colágeno/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Interleucina-17/metabolismo , Interleucina-17/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos Endogâmicos BALB C , Fenótipo , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Wnt/metabolismo , Proteínas Wnt/farmacologia
11.
Front Immunol ; 15: 1296178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515755

RESUMO

Background: The neurodegenerative processes leading to glaucoma are complex. In addition to elevated intraocular pressure (IOP), an involvement of immunological mechanisms is most likely. In the new multifactorial glaucoma model, a combination of high IOP and optic nerve antigen (ONA) immunization leads to an enhanced loss of retinal ganglion cells accompanied by a higher number of microglia/macrophages in the inner retina. Here, we aimed to evaluate the immune response in this new model, especially the complement activation and the number of T-cells, for the first time. Further, the microglia/macrophage response was examined in more detail. Methods: Six-week-old wildtype (WT+ONA) and ßB1-connective tissue growth factor high-pressure mice (CTGF+ONA) were immunized with 1 mg ONA. A wildtype control (WT) and a CTGF group (CTGF) received NaCl instead. Six weeks after immunization, retinae from all four groups were processed for immunohistology, RT-qPCR, and flow cytometry, while serum was used for microarray analyses. Results: We noticed elevated numbers of C1q+ cells (classical complement pathway) in CTGF and CTGF+ONA retinae as well as an upregulation of C1qa, C1qb, and C1qc mRNA levels in these groups. While the complement C3 was only increased in CTGF and CTGF+ONA retinae, enhanced numbers of the terminal membrane attack complex were noted in all three glaucoma groups. Flow cytometry and RT-qPCR analyses revealed an enhancement of different microglia/macrophages markers, including CD11b, especially in CTGF and CTGF+ONA retinae. Interestingly, increased retinal mRNA as well as serum levels of the tumor necrosis factor α were found throughout the different glaucoma groups. Lastly, more T-cells could be observed in the ganglion cell layer of the new CTGF+ONA model. Conclusion: These results emphasize an involvement of the complement system, microglia/macrophages, and T-cells in glaucomatous disease. Moreover, in the new multifactorial glaucoma model, increased IOP in combination with autoimmune processes seem to enforce an additional T-cell response, leading to a more persistent pathology. Hence, this new model mimics the pathomechanisms occurring in human glaucoma more accurately and could therefore be a helpful tool to find new therapeutic approaches for patients in the future.


Assuntos
Glaucoma , Humanos , Camundongos , Animais , Retina/patologia , Células Ganglionares da Retina , Imunidade , Antígenos/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , RNA Mensageiro/metabolismo
12.
Eur J Cell Biol ; 103(2): 151408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583306

RESUMO

BACKGROUND: Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells. METHODS: Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA. RESULTS: By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality. CONCLUSION: ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.


Assuntos
Brônquios , Células Epiteliais , Receptores Odorantes , Humanos , Células Epiteliais/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Brônquios/metabolismo , Brônquios/patologia , Células A549 , Interleucina-8/metabolismo , Cálcio/metabolismo , Pneumopatias/metabolismo , Pneumopatias/patologia , Proliferação de Células , Acroleína/análogos & derivados , Acroleína/farmacologia
13.
Thorax ; 68(1): 31-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23093649

RESUMO

OBJECTIVE: Intranasal application of cowshed dust extract (CDE) during sensitisation in a murine model of experimental asthma leads to a significant alleviation of the clinical parameters of the allergic immune response. However, neither the immunological mechanisms underlying this protective effect nor all of the protective substances included in CDE have yet been described. Recently, complement factor 5a (C5a) receptor signalling has been identified to play a regulatory role in allergic airway disease. Thus we investigated whether CDE can activate the complement system to release biologically active C5a in the lung. METHODS: Proteins included in CDE were identified by mass spectrometry. Complement cleaving activity of a serine protease identified in CDE was validated with the purified enzyme, and the biological activity of the released C5a was determined. C5a was applied in a murine model of allergy to prove its protective impact on allergic airway disease. RESULTS: CDE induced the release of C5a in murine bronchoalveolar lavages (BAL). We identified a serine protease from the midgut of tenebrio molitor larvae in CDEs which was able to induce the release of biologically active C5a in murine BAL. We applied C5a in different doses to female Balb/c mice during the sensitisation phase and during the first antigen challenge and showed that C5a has the ability to dampen important parameters of allergic airway inflammation, such as infiltration of proinflammatory cells into lung tissue or Th2 cytokine secretion by lung cells. CONCLUSIONS: We conclude that the C5a generating enzyme included in CDE might account for some of the allergy protective effects of CDE by generation of C5a in murine lungs.


Assuntos
Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/prevenção & controle , Líquido da Lavagem Broncoalveolar/imunologia , Complemento C5/imunologia , Poeira/imunologia , Inflamação/imunologia , Animais , Asma/patologia , Biópsia por Agulha , Líquido da Lavagem Broncoalveolar/química , Bovinos , Quimiotaxia/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/fisiopatologia , Imuno-Histoquímica , Fatores Imunológicos/análise , Fatores Imunológicos/metabolismo , Inflamação/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Proteólise , Distribuição Aleatória , Sensibilidade e Especificidade
14.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443808

RESUMO

BACKGROUND: A total of 262 million people worldwide suffer from asthma and 461000 people died from it in 2019. Asthma is a disease with different endotypes defined by the granulocytes found in the asthmatic lung. In allergic asthma, the eosinophilic endotype is present, driven by a TH2 response. A TH17 immune response leads to the neutrophil endotype. This often causes uncontrolled asthma and is triggered by pollutants, microbes, and oxidative stress. It has been described that a significant number of patients with eosinophilic asthma develop mixed granulocytic asthma over time. The severity of asthma in the mixed endotype is related to the proportion of neutrophils in the lungs. PURPOSE: In this report, we address the question of how a TH2 response interacts with IL-17A in allergic asthma. METHODS: To this end, we used a mouse model to induce allergic asthma followed by an aerosol challenge with ovalbumin. To investigate the role of IL-17A, we administered IL-17A intranasally during the challenge phase. RESULTS: IL-17A alone did not elicit an immune response, whereas in combination with allergic asthma, it resulted in a shift of the asthmatic endotype from eosinophilic to neutrophilic. TGFß1 was increased in these lungs compared to asthmatic lungs without IL-17A, as was the expression of the IL-17A receptor subunits IL-17RA and IL-17RC. In cultures with human cells, we also found that IL-17A increased the expression of its receptors only in combination with IL-13. We also found this effect for IL-8, which attracts neutrophils in humans. CONCLUSIONS: The TH2 response increased the sensitivity to IL-17A in a mouse asthma model as well as in human cell lines.


Assuntos
Asma , Interleucina-17 , Camundongos , Animais , Humanos , Interleucina-17/metabolismo , Pulmão/metabolismo , Granulócitos/metabolismo , Inflamação/metabolismo
15.
CRISPR J ; 5(1): 53-65, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35099270

RESUMO

Cerebral organoids are a promising model to study human brain function and disease, although the high inter-organoid variability is still challenging. To overcome this limitation, we introduce the method of labeled mixed organoids generated from two different human induced pluripotent stem cell (hiPSC) lines, which enables the identification of cells from different origin within a single organoid. The method combining gene editing and organoid differentiation offers a unique tool to study gene function in a complex human three-dimensional model. Using a CRISPR-Cas9 gene-editing approach, different fluorescent proteins were fused to ß-actin or lamin B1 in hiPSCs, and mixtures of differently edited cells were seeded to induce cerebral organoid differentiation. Consequently, the development of the organoids was detectable by live confocal fluorescence microscopy of whole organoids and immunofluorescence staining in fixed samples. We demonstrate that a direct comparison of the individual cells is possible by having the edited and the control (or the two differentially labeled) cells within the same organoid, thus overcoming the inter-organoid inhomogeneity limitations. Furthermore, the approach enables mosaic analysis of mutant clones in a wild-type three-dimensional cellular environment. It paves the way for the reliable analysis of human genetic disorders using organoids and the gain of fundamental understanding of the molecular mechanisms underlying pathological conditions.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo
16.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230982

RESUMO

Clinical success of Toll-Like receptor-4 (TLR-4) antagonists in sepsis therapy has thus far been lacking. As inhibition of a receptor can only be useful if the receptor is active, stratification of patients with active TLR-4 would be desirable. Our aim was to establish an assay to quantify phosphorylated TLR-4 using the proximity ligation assay (PLA). HEK293 TLR4/MD2/CD14 as well as THP-1 cells were stimulated with LPS and the activation of TLR-4 was measured using the PLA. Furthermore, peripheral blood mononuclear cells (PBMCs) from 25 sepsis patients were used to show the feasibility of this assay in clinical material. Activation of TLR-4 in these samples was compared to the PBMCs of 11 healthy individuals. We could show a transient activation of TLR-4 in both cell lines. Five min after the LPS stimulation, the signal increased 6.7-fold in the HEK293 cells and 4.3-fold in the THP-1 cells. The assay also worked well in the PBMCs of septic patients. Phosphorylation of TLR-4 at study inclusion was 2.9 times higher in septic patients compared to healthy volunteers. To conclude, we established a diagnostic assay that is able to quantify the phosphorylation of TLR-4 in cell culture and in clinical samples of sepsis patients. This makes large-scale stratification of sepsis patients for their TLR-4 activation status possible.


Assuntos
Sepse , Receptor 4 Toll-Like/metabolismo , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia
17.
Nat Commun ; 13(1): 4009, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817801

RESUMO

Diphthamide, a post-translationally modified histidine residue of eukaryotic TRANSLATION ELONGATION FACTOR2 (eEF2), is the human host cell-sensitizing target of diphtheria toxin. Diphthamide biosynthesis depends on the 4Fe-4S-cluster protein Dph1 catalyzing the first committed step, as well as Dph2 to Dph7, in yeast and mammals. Here we show that diphthamide modification of eEF2 is conserved in Arabidopsis thaliana and requires AtDPH1. Ribosomal -1 frameshifting-error rates are increased in Arabidopsis dph1 mutants, similar to yeast and mice. Compared to the wild type, shorter roots and smaller rosettes of dph1 mutants result from fewer formed cells. TARGET OF RAPAMYCIN (TOR) kinase activity is attenuated, and autophagy is activated, in dph1 mutants. Under abiotic stress diphthamide-unmodified eEF2 accumulates in wild-type seedlings, most strongly upon heavy metal excess, which is conserved in human cells. In summary, our results suggest that diphthamide contributes to the functionality of the translational machinery monitored by plants to regulate growth.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Mamíferos/metabolismo , Camundongos , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Allergy Clin Immunol ; 126(3): 648-56.e1-4, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20621350

RESUMO

BACKGROUND: Extract from cowshed dust (CDE) is a source of immunomodulating substances. We have previously shown that such substances protect from experimental allergic disorders in a mouse model of asthma. OBJECTIVE: The objective of this study was to identify immunomodulatory molecules in extracts of dust from an allergy protective farming environment. METHODS: Polysaccharides were isolated from CDE and plants by chromatography and precipitation with specific reagents. Polysaccharides were then characterized by nuclear magnetic resonance spectroscopy. Subsequently, the allergy-protective potential of isolated polysaccharides was tested in a mouse model of asthma. RESULTS: The authors demonstrate that plant arabinogalactans are contained in CDE in high concentrations. The source of this arabinogalactan is fodder, in particular a prevalent grass species known as Alopecurus pratensis. Treatment of murine dendritic cells with grass arabinogalactan resulted in autocrine IL-10 production. Interestingly, these dendritic cells were not able to induce an allergic immune response. Furthermore, intranasal application of grass arabinogalactan protected mice from developing atopic sensitization, allergic airway inflammation and airway hyperreactivity in a mouse model of allergic asthma. This allergy-protective effect is specific for grass arabinogalactan because control experiments with arabinogalactan from gum arabic and larch revealed that these molecules do not show allergy-protective properties. This is likely because of structural differences because we were able to show by nuclear magnetic resonance spectroscopy that although they are predominantly composed of arabinose and galactose, the molecules differ in structure. CONCLUSIONS: The authors conclude that grass arabinogalactans are important immunomodulatory substances that contribute to the protection from allergic airway inflammation, airway hyperresponsiveness, and atopic sensitization in a mouse model of asthma.


Assuntos
Hiper-Reatividade Brônquica/prevenção & controle , Células Dendríticas/imunologia , Poeira , Galactanos/farmacologia , Sistema Respiratório/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Galactanos/isolamento & purificação , Fatores Imunológicos/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Poaceae/química , Sistema Respiratório/imunologia
19.
Front Immunol ; 12: 635411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995354

RESUMO

More than fifty c-type lectin receptors (CLR) are known and have been identified so far. Moreover, we know the group of galectins and sialic acid-binding immunoglobulin-type lectins that also belong to the carbohydrate-binding receptors of the immune system. Thus, the lectin receptors form the largest receptor family among the pathogen recognition receptors. Similar to the toll-like receptors (TLRs), the CLR do not only recognize foreign but also endogenous molecules. In contrast to TLRs, which have a predominantly activating effect on the immune system, lectin receptors also mediate inhibitory signals. They play an important role in innate and adaptive immunity for the induction, regulation and shaping of the immune response. The hygiene hypothesis links enhanced infection to protection from allergic disease. Yet, the microbial substances that are responsible for mediating this allergy-protective activity still have to be identified. Microbes contain both ligands binding to TLRs and carbohydrates that are recognized by CLR and other lectin receptors. In the current literature, the CLR are often recognized as the 'bad guys' in allergic inflammation, because some glycoepitopes of allergens have been shown to bind to CLR, facilitating their uptake and presentation. On the other hand, there are many reports revealing that sugar moieties are involved in immune regulation. In this review, we will summarize what is known about the role of carbohydrate interaction with c-type lectins and other sugar-recognizing receptors in anti-inflammation, with a special focus on the regulation of the allergic immune response.


Assuntos
Hipersensibilidade/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Animais , Humanos , Hipersensibilidade/imunologia , Inflamação/imunologia , Lectinas Tipo C/imunologia , Ligantes , Transdução de Sinais
20.
Front Allergy ; 2: 777545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35386998

RESUMO

Background: The use of ovalbumin as a model allergen in murine models of allergic asthma is controversially discussed since it is not an aeroallergen and sensitization can only be achieved by using strong Th2-inducing adjuvants. Therefore, in this study, a murine model of asthma has been established in which sensitization against the major grass pollen allergen Phl p5b was performed without using aluminum hydroxide (alum). We used this model for specific immunotherapy. Methods: Female, 5-6-week-old mice were sensitized by six subcutaneous (s.c.) injections of 20 µg Phl p5b followed by four provocations to induce allergic airway inflammation. For desensitization, 1 mg of Phl p5b was injected subcutaneously during allergen challenge for one to a maximum of four times. Three days after the last challenge, the allergic immune response was analyzed. Results: Sensitized and challenged animals showed a significant infiltration of eosinophils into the airways, and the production of interleukin-5 (IL-5) by in vitro re-stimulated splenocytes could be detected. Furthermore, hyper-responsiveness of the airways was verified by invasive measurement of airway resistance in methacholine-challenged animals. Desensitized animals showed a significant reduction of all parameters. Conclusion: In this study, a murine model of asthma has successfully been established by sensitization against the clinically relevant allergen Phl p5b without using alum. S.c. injection of allergen dose dependently led to desensitization of sensitized mice. We suggest that this model is useful to study adjuvant effects of immune modulatory substances on immunotherapy without the interference of alum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA