Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Vis ; 19(9): 7, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31426085

RESUMO

Despite extensive investigation, the causes and nature of developmental prosopagnosia (DP)-a severe face identification impairment in the absence of acquired brain injury-remain poorly understood. Drawing on previous work showing that individuals identified as being neurotypical (NT) show robust individual differences in where they fixate on faces, and recognize faces best when the faces are presented at this location, we defined and tested four novel hypotheses for how atypical face-looking behavior and/or retinotopic face encoding could impair face recognition in DP: (a) fixating regions of poor information, (b) inconsistent saccadic targeting, (c) weak retinotopic tuning, and (d) fixating locations not matched to the individual's own face tuning. We found no support for the first three hypotheses, with NTs and DPs consistently fixating similar locations and showing similar retinotopic tuning of their face perception performance. However, in testing the fourth hypothesis, we found preliminary evidence for two distinct phenotypes of DP: (a) Subjects characterized by impaired face memory, typical face perception, and a preference to look high on the face, and (b) Subjects characterized by profound impairments to both face memory and perception and a preference to look very low on the face. Further, while all NTs and upper-looking DPs performed best when faces were presented near their preferred fixation location, this was not true for lower-looking DPs. These results suggest that face recognition deficits in a substantial proportion of people with DP may arise not from aberrant face gaze or compromised retinotopic tuning, but from the suboptimal matching of gaze to tuning.


Assuntos
Atenção/fisiologia , Movimentos Oculares/fisiologia , Reconhecimento Facial/fisiologia , Prosopagnosia/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimentos Sacádicos
2.
Psychol Sci ; 28(12): 1731-1744, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039251

RESUMO

How do people make causal judgments? What role, if any, does counterfactual simulation play? Counterfactual theories of causal judgments predict that people compare what actually happened with what would have happened if the candidate cause had been absent. Process theories predict that people focus only on what actually happened, to assess the mechanism linking candidate cause and outcome. We tracked participants' eye movements while they judged whether one billiard ball caused another one to go through a gate or prevented it from going through. Both participants' looking patterns and their judgments demonstrated that counterfactual simulation played a critical role. Participants simulated where the target ball would have gone if the candidate cause had been removed from the scene. The more certain participants were that the outcome would have been different, the stronger the causal judgments. These results provide the first direct evidence for spontaneous counterfactual simulation in an important domain of high-level cognition.


Assuntos
Movimentos Oculares/fisiologia , Julgamento/fisiologia , Adulto , Medições dos Movimentos Oculares , Feminino , Humanos , Lógica , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
J Vis ; 16(7): 12, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27191940

RESUMO

Recent laboratory studies have found large, stable individual differences in the location people first fixate when identifying faces, ranging from the brows to the mouth. Importantly, this variation is strongly associated with differences in fixation-specific identification performance such that individuals' recognition ability is maximized when looking at their preferred location (Mehoudar, Arizpe, Baker, & Yovel, 2014; Peterson & Eckstein, 2013). This finding suggests that face representations are retinotopic and individuals enact gaze strategies that optimize identification, yet the extent to which this behavior reflects real-world gaze behavior is unknown. Here, we used mobile eye trackers to test whether individual differences in face gaze generalize from lab to real-world vision. In-lab fixations were measured with a speeded face identification task, while real-world behavior was measured as subjects freely walked around the Massachusetts Institute of Technology campus. We found a strong correlation between the patterns of individual differences in face gaze in the lab and real-world settings. Our findings support the hypothesis that individuals optimize real-world face identification by consistently fixating the same location and thus strongly constraining the space of retinotopic input. The methods developed for this study entailed collecting a large set of high-definition, wide field-of-view natural videos from head-mounted cameras and the viewer's fixation position, allowing us to characterize subjects' actually experienced real-world retinotopic images. These images enable us to ask how vision is optimized not just for the statistics of the "natural images" found in web databases, but of the truly natural, retinotopic images that have landed on actual human retinae during real-world experience.


Assuntos
Reconhecimento Facial/fisiologia , Fixação Ocular/fisiologia , Individualidade , Adolescente , Adulto , Face , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas , Adulto Jovem
4.
Proc Natl Acad Sci U S A ; 109(48): E3314-23, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150543

RESUMO

When viewing a human face, people often look toward the eyes. Maintaining good eye contact carries significant social value and allows for the extraction of information about gaze direction. When identifying faces, humans also look toward the eyes, but it is unclear whether this behavior is solely a byproduct of the socially important eye movement behavior or whether it has functional importance in basic perceptual tasks. Here, we propose that gaze behavior while determining a person's identity, emotional state, or gender can be explained as an adaptive brain strategy to learn eye movement plans that optimize performance in these evolutionarily important perceptual tasks. We show that humans move their eyes to locations that maximize perceptual performance determining the identity, gender, and emotional state of a face. These optimal fixation points, which differ moderately across tasks, are predicted correctly by a Bayesian ideal observer that integrates information optimally across the face but is constrained by the decrease in resolution and sensitivity from the fovea toward the visual periphery (foveated ideal observer). Neither a model that disregards the foveated nature of the visual system and makes fixations on the local region with maximal information, nor a model that makes center-of-gravity fixations correctly predict human eye movements. Extension of the foveated ideal observer framework to a large database of real-world faces shows that the optimality of these strategies generalizes across the population. These results suggest that the human visual system optimizes face recognition performance through guidance of eye movements not only toward but, more precisely, just below the eyes.


Assuntos
Face , Percepção Visual , Movimentos Oculares , Feminino , Humanos , Masculino
5.
J Vis ; 15(13): 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26382003

RESUMO

Culture influences not only human high-level cognitive processes but also low-level perceptual operations. Some perceptual operations, such as initial eye movements to faces, are critical for extraction of information supporting evolutionarily important tasks such as face identification. The extent of cultural effects on these crucial perceptual processes is unknown. Here, we report that the first gaze location for face identification was similar across East Asian and Western Caucasian cultural groups: Both fixated a featureless point between the eyes and the nose, with smaller between-group than within-group differences and with a small horizontal difference across cultures (8% of the interocular distance). We also show that individuals of both cultural groups initially fixated at a slightly higher point on Asian faces than on Caucasian faces. The initial fixations were found to be both fundamental in acquiring the majority of information for face identification and optimal, as accuracy deteriorated when observers held their gaze away from their preferred fixations. An ideal observer that integrated facial information with the human visual system's varying spatial resolution across the visual field showed a similar information distribution across faces of both races and predicted initial human fixations. The model consistently replicated the small vertical difference between human fixations to Asian and Caucasian faces but did not predict the small horizontal leftward bias of Caucasian observers. Together, the results suggest that initial eye movements during face identification may be driven by brain mechanisms aimed at maximizing accuracy, and less influenced by culture. The findings increase our understanding of the interplay between the brain's aims to optimally accomplish basic perceptual functions and to respond to sociocultural influences.


Assuntos
Povo Asiático , Movimentos Oculares/fisiologia , Reconhecimento Facial/fisiologia , Fixação Ocular/fisiologia , População Branca , Comparação Transcultural , Feminino , Humanos , Masculino , Inquéritos e Questionários , Adulto Jovem
6.
Psychol Sci ; 24(7): 1216-25, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23740552

RESUMO

In general, humans tend to first look just below the eyes when identifying another person. Does everybody look at the same place on a face during identification, and, if not, does this variability in fixation behavior lead to functional consequences? In two conditions, observers had their free eye movements recorded while they performed a face-identification task. In another condition, the same observers identified faces while their gaze was restricted to specific locations on each face. We found substantial differences, which persisted over time, in where individuals chose to first move their eyes. Observers' systematic departure from a canonical, theoretically optimal fixation point did not correlate with performance degradation. Instead, each individual's looking preference corresponded to an idiosyncratic performance-maximizing point of fixation: Those who looked lower on the face performed better when forced to fixate the lower part of the face. The results suggest an observer-specific synergy between the face-recognition and eye movement systems that optimizes face-identification performance.


Assuntos
Face , Fixação Ocular/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Medições dos Movimentos Oculares , Movimentos Oculares/fisiologia , Feminino , Humanos , Individualidade , Masculino , Reconhecimento Visual de Modelos/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
7.
Neuroimage ; 59(1): 94-108, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-21782959

RESUMO

Group decisions and even aggregation of multiple opinions lead to greater decision accuracy, a phenomenon known as collective wisdom. Little is known about the neural basis of collective wisdom and whether its benefits arise in late decision stages or in early sensory coding. Here, we use electroencephalography and multi-brain computing with twenty humans making perceptual decisions to show that combining neural activity across brains increases decision accuracy paralleling the improvements shown by aggregating the observers' opinions. Although the largest gains result from an optimal linear combination of neural decision variables across brains, a simpler neural majority decision rule, ubiquitous in human behavior, results in substantial benefits. In contrast, an extreme neural response rule, akin to a group following the most extreme opinion, results in the least improvement with group size. Analyses controlling for number of electrodes and time-points while increasing number of brains demonstrate unique benefits arising from integrating neural activity across different brains. The benefits of multi-brain integration are present in neural activity as early as 200 ms after stimulus presentation in lateral occipital sites and no additional benefits arise in decision related neural activity. Sensory-related neural activity can predict collective choices reached by aggregating individual opinions, voting results, and decision confidence as accurately as neural activity related to decision components. Estimation of the potential for the collective to execute fast decisions by combining information across numerous brains, a strategy prevalent in many animals, shows large time-savings. Together, the findings suggest that for perceptual decisions the neural activity supporting collective wisdom and decisions arises in early sensory stages and that many properties of collective cognition are explainable by the neural coding of information across multiple brains. Finally, our methods highlight the potential of multi-brain computing as a technique to rapidly and in parallel gather increased information about the environment as well as to access collective perceptual/cognitive choices and mental states.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Adolescente , Adulto , Eletroencefalografia , Humanos , Adulto Jovem
8.
J Opt Soc Am A Opt Image Sci Vis ; 27(12): 2670-83, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21119752

RESUMO

The application of multivariate techniques to neuroimaging and electrophysiological data has greatly enhanced the ability to detect where, when, and how functional neural information is processed during a variety of behavioral tasks. With the extension to single-trial analysis, neuroscientists are able to relate brain states to perceptual, cognitive, and motor processes. Using pattern classification methods, the neuroscientist can extract neural performance measures in a manner analogous to human behavioral performance, allowing for a consistent information content metric across measurement modalities. However, as with behavioral psychophysical performance, pattern classifier performances are a product of both the task-relevant information inherent in the brain and in the task/stimuli. Here, we argue for the use of an ideal observer framework with which the researcher can effectively normalize the observed neural performance given the task's inherent objective difficulty. We use data from a face versus car discrimination task and compare classifier performance applied to electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data with corresponding human behavior through the absolute and relative efficiency metrics. We show that confounding variables that can lead to erroneous interpretations of information content can be accounted for through comparisons to an ideal observer, allowing for more confident interpretation of the neural mechanisms involved in the task of interest. Finally, we discuss limitations of interpretation due to the transduction of indirect measures of neural activity, underlying assumptions in the optimality of the pattern classifiers, and dependence of efficiency results on signal contrast.


Assuntos
Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Encéfalo , Humanos , Neurociências , Variações Dependentes do Observador
9.
Vision Res ; 99: 57-68, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24291712

RESUMO

Eye movements, which guide the fovea's high resolution and computational power to relevant areas of the visual scene, are integral to efficient, successful completion of many visual tasks. How humans modify their eye movements through experience with their perceptual environments, and its functional role in learning new tasks, has not been fully investigated. Here, we used a face identification task where only the mouth discriminated exemplars to assess if, how, and when eye movement modulation may mediate learning. By interleaving trials of unconstrained eye movements with trials of forced fixation, we attempted to separate the contributions of eye movements and covert mechanisms to performance improvements. Without instruction, a majority of observers substantially increased accuracy and learned to direct their initial eye movements towards the optimal fixation point. The proximity of an observer's default face identification eye movement behavior to the new optimal fixation point and the observer's peripheral processing ability were predictive of performance gains and eye movement learning. After practice in a subsequent condition in which observers were directed to fixate different locations along the face, including the relevant mouth region, all observers learned to make eye movements to the optimal fixation point. In this fully learned state, augmented fixation strategy accounted for 43% of total efficiency improvements while covert mechanisms accounted for the remaining 57%. The findings suggest a critical role for eye movement planning to perceptual learning, and elucidate factors that can predict when and how well an observer can learn a new task with unusual exemplars.


Assuntos
Movimentos Oculares/fisiologia , Face , Aprendizagem/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
10.
Vision Res ; 49(10): 1097-128, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19138699

RESUMO

Scrutiny of the numerous physiology and imaging studies of visual attention reveal that integration of results from neuroscience with the classic theories of visual attention based on behavioral work is not simple. The different subfields have pursued different questions, used distinct experimental paradigms and developed diverse models. The purpose of this review is to use statistical decision theory and computational modeling to relate classic theories of attention in psychological research to neural observables such as mean firing rate or functional imaging BOLD response, tuning functions, Fano factor, neuronal index of detectability and area under the receiver operating characteristic (ROC). We focus on cueing experiments and attempt to distinguish two major leading theories in the study of attention: limited resources model/increased sensitivity vs. selection/differential weighting. We use Bayesian ideal observer (BIO) modeling, in which predictive cues or prior knowledge change the differential weighting (prior) of sensory information to generate predictions of behavioral and neural observables based on Gaussian response variables and Poisson process neural based models. The ideal observer model can be modified to represent a number of classic psychological theories of visual attention by including hypothesized human attentional limited resources in the same way sequential ideal observer analysis has been used to include physiological processing components of human spatial vision (Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discrimination. Psychological Review 96, 267-314.). In particular we compare new biologically plausible implementations of the BIO and variant models with limited resources. We find a close relationship between the behavioral effects of cues predicted by the models developed in the field of human psychophysics and their neuron-based analogs. Critically, we show that cue effects on experimental observables such as mean neural activity, variance, Fano factor and neuronal index of detectability can be consistent with the two major theoretical models of attention depending on whether the neuron is assumed to be computing likelihoods, log-likelihoods or a simple model operating directly on the Poisson variable. Change in neuronal tuning functions can also be consistent with both theories depending on whether the change in tuning is along the dimension being experimentally cued or a different dimension. We show that a neuron's sensitivity appropriately measured using the area under the Receive Operating Characteristic curve can be used to distinguish across both theories and is robust to the many transformations of the decision variable. We provide a summary table with the hope that it might provide some guidance in interpreting past results as well as planning future studies.


Assuntos
Teoria da Decisão , Modelos Psicológicos , Neurônios/fisiologia , Atenção/fisiologia , Teorema de Bayes , Sinais (Psicologia) , Humanos , Modelos Neurológicos , Estimulação Luminosa/métodos , Detecção de Sinal Psicológico , Córtex Visual/fisiologia
11.
Vision Res ; 49(3): 301-14, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19000918

RESUMO

We investigated the ability of humans to optimize face recognition performance through rapid learning of individual relevant features. We created artificial faces with discriminating visual information heavily concentrated in single features (nose, eyes, chin or mouth). In each of 2500 learning blocks a feature was randomly selected and retained over the course of four trials, during which observers identified randomly sampled, noisy face images. Observers learned the discriminating feature through indirect feedback, leading to large performance gains. Performance was compared to a learning Bayesian ideal observer, resulting in unexpectedly high learning compared to previous studies with simpler stimuli. We explore various explanations and conclude that the higher learning measured with faces cannot be driven by adaptive eye movement strategies but can be mostly accounted for by suboptimalities in human face discrimination when observers are uncertain about the discriminating feature. We show that an initial bias of humans to use specific features to perform the task even though they are informed that each of four features is equally likely to be the discriminatory feature would lead to seemingly supra-optimal learning. We also examine the possibility of inefficient human integration of visual information across the spatially distributed facial features. Together, the results suggest that humans can show large performance improvement effects in discriminating faces as they learn to identify the feature containing the discriminatory information.


Assuntos
Face , Aprendizagem/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Discriminação Psicológica/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Psicometria , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA