Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 18(5)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34725311

RESUMO

A brain-computer interface (BCI) aims to derive commands from the user's brain activity in order to relay them to an external device. To do so, it can either detect a spontaneous change in the mental state, in the so-called 'active' BCIs, or a transient or sustained change in the brain response to an external stimulation, in 'reactive' BCIs. In the latter, external stimuli are perceived by the user through a sensory channel, usually sight or hearing. When the stimulation is sustained and periodical, the brain response reaches an oscillatory steady-state that can be detected rather easily. We focus our attention on electroencephalography-based BCIs (EEG-based BCI) in which a periodical signal, either mechanical or electrical, stimulates the user skin. This type of stimulus elicits a steady-state response of the somatosensory system that can be detected in the recorded EEG. The oscillatory and phase-locked voltage component characterising this response is called a steady-state somatosensory-evoked potential (SSSEP). It has been shown that the amplitude of the SSSEP is modulated by specific mental tasks, for instance when the user focuses their attention or not to the somatosensory stimulation, allowing the translation of this variation into a command. Actually, SSSEP-based BCIs may benefit from straightforward analysis techniques of EEG signals, like reactive BCIs, while allowing self-paced interaction, like active BCIs. In this paper, we present a survey of scientific literature related to EEG-based BCI exploiting SSSEP. Firstly, we endeavour to describe the main characteristics of SSSEPs and the calibration techniques that allow the tuning of stimulation in order to maximise their amplitude. Secondly, we present the signal processing and data classification algorithms implemented by authors in order to elaborate commands in their SSSEP-based BCIs, as well as the classification performance that they evaluated on user experiments.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Potenciais Somatossensoriais Evocados , Processamento de Sinais Assistido por Computador
2.
IEEE Trans Vis Comput Graph ; 26(3): 1608-1621, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30295623

RESUMO

Brain-Computer Interfaces (BCIs) enable users to interact with computers without any dedicated movement, bringing new hands-free interaction paradigms. In this paper we study the combination of BCI and Augmented Reality (AR). We first tested the feasibility of using BCI in AR settings based on Optical See-Through Head-Mounted Displays (OST-HMDs). Experimental results showed that a BCI and an OST-HMD equipment (EEG headset and Hololens in our case) are well compatible and that small movements of the head can be tolerated when using the BCI. Second, we introduced a design space for command display strategies based on BCI in AR, when exploiting a famous brain pattern called Steady-State Visually Evoked Potential (SSVEP). Our design space relies on five dimensions concerning the visual layout of the BCI menu; namely: orientation, frame-of-reference, anchorage, size and explicitness. We implemented various BCI-based display strategies and tested them within the context of mobile robot control in AR. Our findings were finally integrated within an operational prototype based on a real mobile robot that is controlled in AR using a BCI and a HoloLens headset. Taken together our results (4 user studies) and our methodology could pave the way to future interaction schemes in Augmented Reality exploiting 3D User Interfaces based on brain activity and BCIs.


Assuntos
Realidade Aumentada , Interfaces Cérebro-Computador , Adulto , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Estudos de Viabilidade , Cabeça/fisiologia , Humanos , Estimulação Luminosa , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA