Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 17: 528, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27474039

RESUMO

BACKGROUND: The rise of the primate lineage is accompanied by an outstanding emergence of microRNAs, small non-coding RNAs with a prominent role in gene regulation. In spite of their biological importance little is known about the way in which natural selection has influenced microRNAs in the human lineage. To study the recent evolutionary history of human microRNAs and to analyze the signatures of natural selection in genomic regions harbouring microRNAs we have investigated the nucleotide substitution rates of 1,872 human microRNAs in the human and chimpanzee lineages. RESULTS: We produced a depurated set of microRNA alignments of human, chimpanzee and orang-utan orthologs combining BLAT and liftOver and selected 1,214 microRNA precursors presenting optimal secondary structures. We classified microRNAs in categories depending on their genomic organization, duplication status and conservation along evolution. We compared substitution rates of the aligned microRNAs between human and chimpanzee using Tajima's Relative Rate Test taking orang-utan as out-group and found several microRNAs with particularly high substitution rates in either the human or chimpanzee branches. We fitted different models of natural selection on these orthologous microRNA alignments and compared them using a likelihood ratio test that uses ancestral repeats and microRNA flanking regions as neutral sequences. We found that although a large fraction of human microRNAs is highly conserved among the three species studied, significant differences in rates of molecular evolution exist among microRNA categories. Particularly, primate-specific microRNAs, which are enriched in isolated and single copy microRNAs, more than doubled substitution rates of those belonging to older, non primate-specific microRNA families. CONCLUSIONS: Our results corroborate the remarkable conservation of microRNAs, a proxy of their functional relevance, and indicate that a subset of human microRNAs undergo nucleotide substitutions at higher rates, which may be suggestive of the action of positive selection.


Assuntos
MicroRNAs/genética , Pan troglodytes/genética , Pongo/genética , Análise de Sequência de RNA/métodos , Substituição de Aminoácidos , Animais , Evolução Molecular , Genoma Humano , Humanos , Funções Verossimilhança , MicroRNAs/química , Modelos Genéticos , Taxa de Mutação , Seleção Genética
2.
Genome Res ; 21(10): 1626-39, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21824994

RESUMO

Copy number variants (CNVs) are increasingly acknowledged as an important source of evolutionary novelties in the human lineage. However, our understanding of their significance is still hindered by the lack of primate CNV data. We performed intraspecific comparative genomic hybridizations to identify loci harboring copy number variants in each of the four great apes: bonobos, chimpanzees, gorillas, and orangutans. For the first time, we could analyze differences in CNV location and frequency in these four species, and compare them with human CNVs and primate segmental duplication (SD) maps. In addition, for bonobo and gorilla, patterns of CNV and nucleotide diversity were studied in the same individuals. We show that CNVs have been subject to different selective pressures in different lineages. Evidence for purifying selection is stronger in gorilla CNVs overlapping genes, while positive selection appears to have driven the fixation of structural variants in the orangutan lineage. In contrast, chimpanzees and bonobos present high levels of common structural polymorphism, which is indicative of relaxed purifying selection together with the higher mutation rates induced by the known burst of segmental duplication in the ancestor of the African apes. Indeed, the impact of the duplication burst is noticeable by the fact that bonobo and chimpanzee share more CNVs with gorilla than expected. Finally, we identified a number of interesting genomic regions that present high-frequency CNVs in all great apes, while containing only very rare or even pathogenic structural variants in humans.


Assuntos
Variações do Número de Cópias de DNA , Gorilla gorilla/genética , Pan paniscus/genética , Pan troglodytes/genética , Pongo/genética , Animais , Estruturas Cromossômicas , Hibridização Genômica Comparativa , Humanos , Filogenia , Polimorfismo Genético , Duplicações Segmentares Genômicas
3.
J Med Genet ; 50(1): 25-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23160276

RESUMO

BACKGROUND AND AIM: Several studies have highlighted the association of the 12q13.3-12q14.1 region with coeliac disease, type 1 diabetes, rheumatoid arthritis and multiple sclerosis (MS); however, the causal variants underlying diseases are still unclear. The authors sought to identify the functional variant of this region associated with MS. METHODS: Tag-single nucleotide polymorphism (SNP) analysis of the associated region encoding 15 genes was performed in 2876 MS patients and 2910 healthy Caucasian controls together with expression regulation analyses. RESULTS: rs6581155, which tagged 18 variants within a region where 9 genes map, was sufficient to model the association. This SNP was in total linkage disequilibrium (LD) with other polymorphisms that associated with the expression levels of FAM119B, AVIL, TSFM, TSPAN31 and CYP27B1 genes in different expression quantitative trait loci studies. Functional annotations from Encyclopedia of DNA Elements (ENCODE) showed that six out of these rs6581155-tagged-SNPs were located in regions with regulatory potential and only one of them, rs10877013, exhibited allele-dependent (ratio A/G=9.5-fold) and orientation-dependent (forward/reverse=2.7-fold) enhancer activity as determined by luciferase reporter assays. This enhancer is located in a region where a long-range chromatin interaction among the promoters and promoter-enhancer of several genes has been described, possibly affecting their expression simultaneously. CONCLUSIONS: This study determines a functional variant which alters the enhancer activity of a regulatory element in the locus affecting the expression of several genes and explains the association of the 12q13.3-12q14.1 region with MS.


Assuntos
25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Predisposição Genética para Doença , Cinesinas/genética , Metiltransferases/genética , Esclerose Múltipla/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos Humanos Par 12 , Elementos Facilitadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/metabolismo , Polimorfismo de Nucleotídeo Único , Transcrição Gênica
4.
Evol Appl ; 17(2): e13655, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357358

RESUMO

The majority of the transcribed genome does not have coding potential but these non-coding transcripts play crucial roles in transcriptional and post-transcriptional regulation of protein-coding genes. Regulation of gene expression is important in shaping an organism's response to environmental changes, ultimately impacting their survival and persistence as population or species face global change. However, the roles of long non-coding RNAs (lncRNAs), when confronted with environmental changes, remain largely unclear. To explore the potential role of lncRNAs in fish exposed to ocean acidification (OA), we analyzed publicly available brain RNA-seq data from a coral reef fish Acanthochromis polyacanthus. We annotated the lncRNAs in its genome and examined the expression changes of intergenic lncRNAs (lincRNAs) between A. polyacanthus samples from a natural CO2 seep and a nearby control site. We identified 4728 lncRNAs, including 3272 lincRNAs in this species. Remarkably, 93.03% of these lincRNAs were species-specific. Among the 125 highly expressed lincRNAs and 403 differentially expressed lincRNAs in response to elevated CO2, we observed that lincRNAs were either neighboring or potentially trans-regulating differentially expressed coding genes associated with pH regulation, neural signal transduction, and ion transport, which are known to be important in the response to OA in fish. In summary, lncRNAs may facilitate fish acclimation and mediate the responses of fish to OA by modulating the expression of crucial coding genes, which offers insight into the regulatory mechanisms underlying fish responses to environmental changes.

5.
Evol Appl ; 14(7): 1794-1806, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34295364

RESUMO

Volcanic CO2 seeps are natural laboratories that can provide insights into the adaptation of species to ocean acidification. While many species are challenged by reduced-pH levels, some species benefit from the altered environment and thrive. Here, we explore the molecular mechanisms of adaptation to ocean acidification in a population of a temperate fish species that experiences increased population sizes under elevated CO2. Fish from CO2 seeps exhibited an overall increased gene expression in gonad tissue compared with those from ambient CO2 sites. Up-regulated genes at CO2 seeps are possible targets of adaptive selection as they can directly influence the physiological performance of fishes exposed to ocean acidification. Most of the up-regulated genes at seeps were functionally involved in the maintenance of pH homeostasis and increased metabolism, and presented a deviation from neutral evolution expectations in their patterns of DNA polymorphisms, providing evidence for adaptive selection to ocean acidification. The targets of this adaptive selection are likely regulatory sequences responsible for the increased expression of these genes, which would allow a fine-tuned physiological regulation to maintain homeostasis and thrive at CO2 seeps. Our findings reveal that standing genetic variation in DNA sequences regulating the expression of genes in response to a reduced-pH environment could provide for adaptive potential to near-future ocean acidification in fishes. Moreover, with this study we provide a forthright methodology combining transcriptomics and genomics, which can be applied to infer the adaptive potential to different environmental conditions in wild marine populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA