Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(20): 8619-8626, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643400

RESUMO

Cs4PbBr6 (0D) nanocrystals at room temperature have both been reported as nonemissive and green-emissive systems in conflicting reports, with no consensus regarding both the origin of the green emission and the emission quenching mechanism. Here, via ab initio molecular dynamics (AIMD) simulations and temperature-dependent photoluminescence (PL) spectroscopy, we show that the PL in these 0D metal halides is thermally quenched well below 300 K via strong electron-phonon coupling. To unravel the source of green emission reported for bulk 0D systems, we further study two previously suggested candidate green emitters: (i) a Br vacancy, which we demonstrate to present a strong thermal emission quenching at room temperature; (ii) an impurity, based on octahedral connectivity, that succeeds in suppressing nonradiative quenching via a reduced electron-phonon coupling in the corner-shared lead bromide octahedral network. These findings contribute to unveiling the mechanism behind the temperature-dependent PL in lead halide materials of different dimensionality.


Assuntos
Nanopartículas
2.
Phys Rev Lett ; 127(11): 117601, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558956

RESUMO

We study the influence of oxygen vacancies on the formation of charged 180° domain walls in ferroelectric BaTiO_{3} using first principles calculations. We show that it is favorable for vacancies to assemble in crystallographic planes, and that such clustering is accompanied by the formation of a charged domain wall. The domain wall has negative bound charge, which compensates the nominal positive charge of the vacancies and leads to a vanishing density of free charge at the wall. This is in contrast to the positively charged domain walls, which are nearly completely compensated by free charge from the bulk. The results thus explain the experimentally observed difference in electronic conductivity of the two types of domain walls, as well as the generic prevalence of charged domain walls in ferroelectrics. Moreover, the explicit demonstration of vacancy driven domain wall formation implies that specific charged domain wall configurations may be realized by bottom-up design for use in domain wall based information processing.

3.
Nano Lett ; 20(3): 1808-1818, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31991086

RESUMO

Two-dimensional colloidal halide perovskite nanocrystals are promising materials for light-emitting applications. Recent studies have focused on nanoplatelets that are able to self-assemble and transform on solid substrates. However, the mechanism behind the process and the atomic arrangement of their assemblies remain unclear. Here, we present a detailed analysis of the transformation of self-assembled stacks of CsPbBr3 nanoplatelets in solution over a period of a few months by using ex situ transmission electron microscopy and surface analysis. We demonstrate that the transformation mechanism can be understood as oriented attachment, proceeding through the following steps: (i) desorption of the ligands from the surfaces of the particles, causing the seamless atomic merging of nanoplatelet stacks into nanobelts; (ii) merging of neighboring nanobelts that form more extended nanoplates; and (iii) attachment of nanobelts and nanoplates, forming objects with an atomic structure that resembles a mosaic made of broken nanotiles. We reveal that aged nanobelts and nanoplates, which are mainly stabilized by amine/ammonium ions, link through a bilayer of CsBr, with the atomic columns of neighboring perovskite lattices shifted by a half-unit-cell, forming Ruddlesden-Popper planar faults. We also show, via in situ monitoring of the nanocrystal photoluminescence combined with transmission electron microscopy analysis, that the transformation is temperature driven and that it can take place within tens of minutes in solution and in spin-coated films. Understanding this process gives crucial information for the design and fabrication of perovskite materials, where control over the type and density of defects is desired, stimulating the development of perovskite nanocrystal structures with tailored electronic properties.

4.
Inorg Chem ; 59(1): 548-554, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31829568

RESUMO

An effort to synthesize the Cu(I) variant of a lead-free double perovskite isostructural with Cs2AgInCl6 resulted in the formation of Cs3Cu4In2Cl13 nanocrystals with an unusual structure, as revealed by single-nanocrystal three-dimensional electron diffraction. These nanocrystals adopt a A2BX6 structure (K2PtCl6 type, termed vacancy ordered perovskite) with tetrahedrally coordinated Cu(I) ions. In the structure, 25% of the A sites are occupied by [Cu4Cl]3+ clusters (75% by Cs+), and the B sites are occupied by In3+. Such a Cs3Cu4In2Cl13 compound prepared at the nanoscale is not known in the bulk and is an example of a multinary metal halide with inorganic cluster cations residing in A sites. The stability of the compound was supported by density functional theory calculations that also revealed that its bandgap is direct but parity forbidden. The existence of the Cs3Cu4In2Cl13 structure demonstrates that small inorganic cluster cations can occupy A sites in multinary metal halides.

5.
Nano Lett ; 18(12): 7822-7831, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30383965

RESUMO

Fully inorganic cesium lead halide perovskite (CsPbX3) nanocrystals (NCs) have been extensively studied due to their excellent optical properties, especially their high photoluminescence quantum yield (PLQY) and the ease with which the PL can be tuned across the visible spectrum. So far, most strategies for synthesizing CsPbX3 NCs are highly sensitive to the processing conditions and ligand combinations. For example, in the synthesis of nanocubes of different sizes, it is not uncommon to have samples that contain various other shapes, such as nanoplatelets and nanosheets. Here, we report a new colloidal synthesis method for preparing shape-pure and nearly monodispersed CsPbBr3 nanocubes using secondary amines. Regardless of the length of the alkyl chains, the oleic acid concentration, and the reaction temperature, only cube-shaped NCs were obtained. The shape purity and narrow size distribution of the nanocubes are evident from their sharp excitonic features and their ease of self-assembly in superlattices, reaching lateral dimensions of up to 50 µm. We attribute this excellent shape and phase purity to the inability of secondary amines to find the right steric conditions at the surface of the NCs, which consequently limits the formation of low-dimensional structures. Furthermore, no contamination from other phases was observed, not even from Cs4PbBr6, presumably due to the poor ability of secondary aliphatic amines to coordinate to PbBr2 and, hence, to provide a reaction environment that is depleted in Pb.

6.
J Am Chem Soc ; 140(44): 14878-14886, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30358392

RESUMO

We report an amine-free synthesis of lead halide perovskite (LHP) nanocrystals, using trioctylphosphine oxide (TOPO) instead of aliphatic amines, in combination with a protic acid (e.g., oleic acid). The overall synthesis scheme bears many similarities to the chemistry behind the preparation of LHP thin films and single crystals, in terms of ligand coordination to the chemical precursors. The acidity of the environment and hence the extent of protonation of the TOPO molecules tune the reactivity of the PbX2 precursor, regulating the size of the nanocrystals. On the other hand, TOPO molecules are virtually absent from the surface of our nanocrystals, which are simply passivated by one type of ligand (e.g., Cs-oleate). Furthermore, our studies reveal that Cs-oleate is dynamically bound to the surface of the nanocrystals and that an optimal surface coverage is critical for achieving high photoluminescence quantum yield. Our scheme delivers NCs with a controlled size and shape: only cubes are formed, with no contamination with platelets, regardless of the reaction conditions that were tested. We attribute such a shape homogeneity to the absence of primary aliphatic amines in our reaction environment, since these are known to promote the formation of nanocrystals with sheet/platelet morphologies or layered phases under certain reaction conditions. The TOPO route is particularly appealing with regard to synthesizing LHP nanocrystals for large-scale manufacturing, as the yield in terms of material produced is close to the theoretical limit: i.e., almost all precursors employed in the synthesis are converted into nanocrystals.

7.
Phys Chem Chem Phys ; 18(37): 26033-26039, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27711606

RESUMO

The sequence of phase transitions and structural instabilities of the Sr2MWO6 double perovskites are investigated using a rigid ion model. The parametrization of the short range empirical potential allows the control of the cation sizes by means of independent parameters, and in particular, the effective size of the M cation can be tuned to reproduce the behaviour of the whole family. The coupling of symmetry modes and its role in the stability of the phases are discussed, and molecular dynamics simulations are carried out to determine structural phase transitions as a function of temperature. A satisfactory agreement between experiments and ab initio calculations is obtained for the relevant range of ionic radii and temperatures, indicating that the range of stability of the structures is mainly governed by steric effects.

8.
J Phys Chem Lett ; 15(21): 5689-5695, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38767955

RESUMO

Lead-chloride perovskites are promising candidates for optoelectronic applications, such as visible-blind UV photodetection. It remains unclear how the deep defects in this wide-bandgap material impact the carrier recombination dynamics. In this work, we study the defect properties of MAPbCl3 (MA = CH3NH3) based on photoluminescence (PL) measurements. Our investigations show that apart from the intrinsic emission, four sub-bandgap emissions emerge, which are very likely to originate from the radiative recombination of excitons bound to several intrinsic vacancy and interstitial defects. The intensity of various emission features can be tuned by adjusting the type and ratio of precursors used during synthesis. Our study not only provides important insights into the defect property and carrier recombination mechanism in this class of material but also demonstrates efficient strategies for defect passivation and engineering, paving the way for further development of lead-chloride perovskite-based optoelectronic devices.

9.
Chem Mater ; 31(6): 2182-2190, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32952295

RESUMO

The vast majority of lead halide perovskite (LHP) nanocrystals (NCs) are currently based on either a single halide composition (CsPbCl3, CsPbBr3, and CsPbI3) or an alloyed mixture of bromide with either Cl- or I- [i.e., CsPb(Br:Cl)3 or CsPb(Br:I)3]. In this work, we present the synthesis as well as a detailed optical and structural study of two halide alloying cases that have not previously been reported for LHP NCs: Cs2PbI2Cl2 NCs and triple halide CsPb(Cl:Br:I)3 NCs. In the case of Cs2PbI2Cl2, we observe for the first time NCs with a fully inorganic Ruddlesden-Popper phase (RPP) crystal structure. Unlike the well-explored organic-inorganic RPP, here, the RPP formation is triggered by the size difference between the halide ions. These NCs exhibit a strong excitonic absorption, albeit with a weak photoluminescence quantum yield (PLQY). In the case of the triple halide CsPb(Cl:Br:I)3 composition, the NCs comprise a CsPbBr2Cl perovskite crystal lattice with only a small amount of incorporated iodide, which segregates at RPP planes' interfaces within the CsPb(Cl:Br:I)3 NCs. Supported by density functional theory calculations and postsynthetic surface treatments to enhance the PLQY, we show that the combination of iodide segregation and defective RPP interfaces are most likely linked to the strong PL quenching observed in these nanostructures. In summary, this work demonstrates the limits of halide alloying in LHP NCs because a mixture that contains halide ions of very different sizes leads to the formation of defective RPP interfaces and a severe quenching of LHP NC's optical properties.

10.
J Phys Chem Lett ; 10(13): 3715-3726, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244273

RESUMO

Ruling over the surface chemistry of metal halide perovskite nanocrystals (NCs) is crucial to access reliable luminophores. Here, we provide an atomic-level description of the surface of colloidal CsPbBr3 NCs, achieving an effective passivation strategy that leads to near-unity photoluminescence quantum yield. To this end, we used two different types of CsPbBr3 NCs, which had been synthesized with an outer shell of either oleylammonium bromide ion pairs or Cs-oleate complexes. We perturbed the dynamic equilibria at the NCs' surface with ligands from a comprehensive library, including amines (and their conjugated acids) with different basicities, chain lengths, and steric encumbrances. We demonstrate that control of both ligand binding affinity and ligand-to-NC molar ratio is essential to attain thermodynamically stable coordination of the NC surface. We thus present a reliable protocol for managing the surface chemistry of colloidal CsPbBr3 NCs and for selectively addressing their ligand-induced morphological (and structural) transformations.

11.
J Phys Chem Lett ; 9(17): 4895-4900, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30085683

RESUMO

Cation exchange (CE) reactions have emerged as a technologically important route, complementary to the colloidal synthesis, to produce nanostructures of different geometries and compositions for a variety of applications. Here it is demonstrated with first-principles simulations that an interstitial impurity cation in CdSe nanocrystals weakens nearby bonds and reduces the CE barrier in the prototypical exchange of Cd2+ ions by Ag+ ions. A Wannier function-based tight binding model is employed to quantify microscopic mechanisms that influence this behavior. To support our model, we also tested our findings in a CE experiment: both CdSe and interstitially Ag-doped CdSe nanocrystals (containing 4% of Ag+ ions per nanocrystal on average) were exposed to Pb2+ ions at room temperature and it was observed that the exchange reaction proceeds further in doped nanocrystals. The findings suggest doping as a possible route to promote CE reactions that hardly undergo exchange otherwise, for example, those in III-V semiconductor nanocrystals.

12.
Nat Commun ; 9(1): 505, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410426

RESUMO

Cation exchange is a versatile tool to control the composition of nanocrystals, and recently deterministic patterning could be achieved by combining it with lithography techniques. Regarding single nanocrystal structures, such spatial control of cation exchange enables the design of heterostructures, which can be integrated in functional optoelectronic elements. In this work, we fabricate nanowire CdSe/Cu2Se heterojunctions by masking cation exchange via electron-beam irradiation, such that cation exchange proceeds only in the non-irradiated sections. Interestingly, the heterojunction interfaces are almost atomically sharp, and the adjacent CdSe and Cu2Se domains exhibit epitaxial relationships. We show that the cation exchange at the CdSe/Cu2Se interface is only possible if the displaced Cd2+ ions can radially out-diffuse to the solution phase. If this exit pathway is blocked, the cation exchange cannot occur. Our technique allows one to transform already contacted single nanowires, and the obtained heterojunction nanowires manifest a noticeable gain in conductance.

13.
ACS Appl Mater Interfaces ; 10(35): 29583-29592, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30088758

RESUMO

We report an interesting case of in situ dynamic nanostructuring of catalyst and support under hydrogen evolution conditions in basic media. When solution-grown CuO nanoplates on titanium substrates are subjected to hydrogen evolution reaction, besides the reduction of CuO to metallic Cu nanoplates, both catalyst and support simultaneously undergo a nanostructuring process. The process is driven by the dissolution-redeposition of Cu and the alkaline etching of the titanium support. The morphology of the resulting nanocomposite material consists of a porous matrix made of ultrasmall Cu nanocrystals and amorphous TiO x nanoparticles. Interestingly, the nanostructuring of the catalyst can be finely controlled by varying the applied potential. Such a process leads to a 5.4-fold improvement in the catalyst activity, which is attributed not only to its large active surface area (formed upon nanostructuring), but also to an improved water dissociation activity, provided by the in situ formation of TiO x nanoparticles. The final catalyst exhibits -10 mA/cm2 of current density at a small overpotential of -108 mV and a long-term operational stability up to 50 h. Density functional theory calculations show that the co-presence of Cu and TiO2 nanoparticles optimizes the free energy of hydrogen adsorption in the final catalyst. Our work highlights the importance of studying the dynamic evolution of catalysts under operational conditions and choice of proper support that enhances the catalyst activity.

14.
Sci Adv ; 3(5): e1602371, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28508057

RESUMO

Domain walls (DWs) in ferroic materials, across which the order parameter abruptly changes its orientation, can host emergent properties that are absent in the bulk domains. Using a broadband (106 to 1010 Hz) scanning impedance microscope, we show that the electrical response of the interlocked antiphase boundaries and ferroelectric DWs in hexagonal rare-earth manganites (h-RMnO3) is dominated by the bound-charge oscillation rather than free-carrier conduction at the DWs. As a measure of the rate of energy dissipation, the effective conductivity of DWs on the (001) surfaces of h-RMnO3 at gigahertz frequencies is drastically higher than that at dc, whereas the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This acoustic wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA