Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34683975

RESUMO

Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.

2.
Int J Pharm ; 484(1-2): 75-84, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25708004

RESUMO

In this study, hybrid silica xerogel particles were developed as carriers of budesonide (BDS) for efficient local treatment of inflammatory bowel diseases (IBD). Organically modified silica particles (ORMOSILs) were prepared by co-condensation of 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) by an ambient temperature acid catalysed sol-gel process followed by spray-drying. Formulation for preparation of BDS-loaded particles was optimized and their physicochemical parameters and drug release profiles were evaluated in vitro. Optimal formulation had a small particle size (mean diameter of 1.45±0.02µm) with unimodal narrow size distribution and high encapsulation efficiency (98.0 ± 1.85%). Due to the positive surface charge originated from amino group of APTES, ORMOSILs showed excessive mucoadhesiveness in comparison to native TEOS particles. The drug release decreased with increasing pH from 2.0 to 7.4. In order to avoid undesirable erroneous performance in the upper GI tract, particles were additionally coated with Eudragit(®) FS 30D, as a barrier to the drug release at pH range from 2.0 to 7.0. After Eudragit(®) FS 30D coating, the release of BDS in acidic media was sustained, while no significant differences in drug release were observed at pH 7.4. In conclusion, pH-responsive ORMOSILs showed great potential for efficient BDS delivery to the colon region.


Assuntos
Budesonida/química , Budesonida/farmacocinética , Colo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Siloxanas/química , Siloxanas/farmacocinética , Animais , Budesonida/administração & dosagem , Química Farmacêutica , Colo/efeitos dos fármacos , Feminino , Tamanho da Partícula , Ratos , Ratos Wistar , Siloxanas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA