Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Am J Respir Cell Mol Biol ; 69(4): 391-403, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290041

RESUMO

Acute respiratory distress syndrome (ARDS) is a lung disease characterized by acute onset of noncardiogenic pulmonary edema, hypoxemia, and respiratory insufficiency. The current treatment for ARDS is mainly supportive in nature, providing a critical need for targeted pharmacological management. We addressed this medical problem by developing a pharmacological treatment for pulmonary vascular leakage, a culprit of alveolar damage and lung inflammation. Our novel therapeutic target is the microtubule accessory factor EB3 (end binding protein 3), which contributes to pulmonary vascular leakage by amplifying pathological calcium signaling in endothelial cells in response to inflammatory stimuli. EB3 interacts with IP3R3 (inositol 1,4,5-trisphosphate receptor 3) and orchestrates calcium release from endoplasmic reticulum stores. Here, we designed and tested the therapeutic benefits of a 14-aa peptide named CIPRI (cognate IP3 receptor inhibitor), which disrupted EB3-IP3R3 interaction in vitro and in lungs of mice challenged with endotoxin. Treatment with CIPRI or depletion of IP3R3 in lung microvascular endothelial monolayers mitigated calcium release from endoplasmic reticulum stores and prevented a disassembly of vascular endothelial cadherin junctions in response to the proinflammatory mediator α-thrombin. Furthermore, intravenous administration of CIPRI in mice mitigated inflammation-induced lung injury, blocked pulmonary microvascular leakage, prevented activation of NFAT (nuclear factor of activated T cells) signaling, and reduced production of proinflammatory cytokines in the lung tissue. CIPRI also improved survival of mice from endotoxemia and polymicrobial sepsis. Together, these data demonstrate that targeting EB3-IP3R3 interaction with a cognate peptide is a promising strategy to address hyperpermeability of microvessels in inflammatory lung diseases.


Assuntos
Edema Pulmonar , Síndrome do Desconforto Respiratório , Camundongos , Animais , Células Endoteliais/metabolismo , Cálcio/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Pulmão/patologia , Edema Pulmonar/patologia , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
2.
PLoS Pathog ; 16(8): e1008802, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822428

RESUMO

Hepatitis B virus (HBV) is a worldwide health problem without curative treatments. Investigation of the regulation of HBV biosynthesis by class I and II histone deacetylases (HDACs) demonstrated that catalytically active HDAC5 upregulates HBV biosynthesis. HDAC5 expression increased both the stability and splicing of the HBV 3.5 kb RNA without altering the translational efficiency of the viral pregenomic or spliced 2.2 kb RNAs. Together, these observations point to a broader role of HDAC5 in regulating RNA splicing and transcript stability while specifically identifying a potentially novel approach toward antiviral HBV therapeutic development.


Assuntos
Genoma Viral , Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Histona Desacetilases/metabolismo , Estabilidade de RNA , RNA Viral/biossíntese , RNA Viral/química , Regulação Viral da Expressão Gênica , Células Hep G2 , Vírus da Hepatite B/genética , Histona Desacetilases/genética , Humanos , Transcrição Gênica , Replicação Viral
3.
Circulation ; 139(10): 1300-1319, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30586735

RESUMO

BACKGROUND: Platelet-neutrophil interactions contribute to vascular occlusion and tissue damage in thromboinflammatory disease. Platelet glycoprotein Ibα (GPIbα), a key receptor for the cell-cell interaction, is believed to be constitutively active for ligand binding. Here, we established the role of platelet-derived protein disulfide isomerase (PDI) in reducing the allosteric disulfide bonds in GPIbα and enhancing the ligand-binding activity under thromboinflammatory conditions. METHODS: Bioinformatic analysis identified 2 potential allosteric disulfide bonds in GPIbα. Agglutination assays, flow cytometry, surface plasmon resonance analysis, a protein-protein docking model, proximity ligation assays, and mass spectrometry were used to demonstrate a direct interaction between PDI and GPIbα and to determine a role for PDI in regulating GPIbα function and platelet-neutrophil interactions. Also, real-time microscopy and animal disease models were used to study the pathophysiological role of PDI-GPIbα signaling under thromboinflammatory conditions. RESULTS: Deletion or inhibition of platelet PDI significantly reduced GPIbα-mediated platelet agglutination. Studies using PDI-null platelets and recombinant PDI or Anfibatide, a clinical-stage GPIbα inhibitor, revealed that the oxidoreductase activity of platelet surface-bound PDI was required for the ligand-binding function of GPIbα. PDI directly bound to the extracellular domain of GPIbα on the platelet surface and reduced the Cys4-Cys17 and Cys209-Cys248 disulfide bonds. Real-time microscopy with platelet-specific PDI conditional knockout and sickle cell disease mice demonstrated that PDI-regulated GPIbα function was essential for platelet-neutrophil interactions and vascular occlusion under thromboinflammatory conditions. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that PDI-GPIbα signaling played a crucial role in tissue damage. CONCLUSIONS: Our results demonstrate that PDI-facilitated cleavage of the allosteric disulfide bonds tightly regulates GPIbα function, promoting platelet-neutrophil interactions, vascular occlusion, and tissue damage under thromboinflammatory conditions.


Assuntos
Anemia Falciforme/enzimologia , Plaquetas/enzimologia , Inflamação/enzimologia , Neutrófilos/metabolismo , Adesividade Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Trombose/enzimologia , Anemia Falciforme/sangue , Anemia Falciforme/genética , Animais , Modelos Animais de Doenças , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Inflamação/sangue , Inflamação/genética , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/deficiência , Isomerases de Dissulfetos de Proteínas/genética , Transdução de Sinais , Trombose/sangue , Trombose/genética
4.
Carcinogenesis ; 37(8): 827-838, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27267997

RESUMO

Androgen deprivation therapy in prostate cancer is extremely effective; however, due to the continuous expression and/or mutagenesis of androgen receptor (AR), the resistance to antihormonal therapy is a natural progression. Consequently, targeting the AR for degradation offers an alternate approach to overcome this resistance in prostate cancer. In this study, we demonstrate that carnosic acid, a benzenediol diterpene, binds the ligand-binding domain of the AR and degrades the AR via endoplasmic reticulum (ER) stress-mediated proteasomal degradative pathway. In vitro, carnosic acid treatment induced degradation of AR and decreased expression of prostate-specific antigen in human prostate cancer cell lines LNCaP and 22Rv1. Carnosic acid also promoted the expression of ER proteins including BiP and CHOP in a dose-dependent manner. Downregulation of CHOP by small interfering RNA somewhat restored expression of AR suggesting that AR degradation is dependent on ER stress pathway. Future studies will need to evaluate other aspects of the unfolded protein response pathway to characterize the regulation of AR degradation. Furthermore, cotreating cells individually with carnosic acid and proteasome inhibitor (MG-132) and carnosic acid and an ER stress modulator (salubrinal) restored protein levels of AR, suggesting that AR degradation is mediated by ER stress-dependent proteasomal degradation pathway. Degradation of AR and induction of CHOP protein were also evident in vivo along with a 53% reduction in growth of xenograft prostate cancer tumors. In addition, carnosic acid-induced ER stress in prostate cancer cells but not in normal prostate epithelial cells procured from patient biopsies. In conclusion, these data suggest that molecules such as carnosic acid could be further evaluated and optimized as a potential therapeutic alternative to target AR in prostate cancer.


Assuntos
Abietanos/metabolismo , Antígeno Prostático Específico/genética , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/biossíntese , Fator de Transcrição CHOP/biossíntese , Abietanos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cinamatos/administração & dosagem , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leupeptinas/administração & dosagem , Masculino , Camundongos , Antígeno Prostático Específico/biossíntese , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteólise/efeitos dos fármacos , Tioureia/administração & dosagem , Tioureia/análogos & derivados , Fator de Transcrição CHOP/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biomedicines ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38790902

RESUMO

Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by blood ACE levels) is associated with an increased risk of cardiovascular diseases. Elevated blood ACE is also a marker for granulomatous diseases. Decreased blood ACE activity is becoming a new risk factor for Alzheimer's disease. We applied our novel approach-ACE phenotyping-to characterize pairs of tissues (lung, heart, lymph nodes) and serum ACE in 50 patients. ACE phenotyping includes (1) measurement of ACE activity with two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of these substrates (ZPHL/HHL ratio); (3) determination of ACE immunoreactive protein levels using mAbs to ACE; and (4) ACE conformation with a set of mAbs to ACE. The ACE phenotyping approach in screening format with special attention to outliers, combined with analysis of sequencing data, allowed us to identify patient with a unique ACE phenotype related to decreased ability of inhibition of ACE activity by albumin, likely due to competition with high CCL18 in this patient for binding to ACE. We also confirmed recently discovered gender differences in sialylation of some glycosylation sites of ACE. ACE phenotyping is a promising new approach for the identification of ACE phenotype outliers with potential clinical significance, making it useful for screening in a personalized medicine approach.

6.
Biomedicines ; 12(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255267

RESUMO

We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer's disease because amyloid Aß42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant-up to 5%-comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer's disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer's disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R.

7.
Biomedicines ; 11(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36979933

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) is highly expressed in renal proximal tubules, but ACE activity/levels in the urine are at least 100-fold lower than in the blood. Decreased proximal tubular ACE has been associated with renal tubular damage in both animal models and clinical studies. Because ACE is shed into urine primarily from proximal tubule epithelial cells, its urinary ACE measurement may be useful as an index of tubular damage. OBJECTIVE AND METHODOLOGY: We applied our novel approach-ACE phenotyping-to characterize urinary ACE in volunteer subjects. ACE phenotyping includes (1) determination of ACE activity using two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of the two substrates (ZPHL/HHL ratio); (3) quantification of ACE immunoreactive protein levels; and (4) fine mapping of local ACE conformation with mAbs to ACE. PRINCIPAL FINDINGS: In normal volunteers, urinary ACE activity was 140-fold less than in corresponding plasma/serum samples and did not differ between males and females. However, urinary ACE immunoreactivity (normalized binding of 25 mAbs to different epitopes) was strongly sex-dependent for the several mAbs tested, an observation likely explained by differences in tissue ACE glycosylation/sialylation between males and females. Urinary ACE phenotyping also allowed the identification of ACE outliers. In addition, daily variability of urinary ACE has potential utility as a feedback marker for dieting individuals pursuing weight loss. CONCLUSIONS/SIGNIFICANCE: Urinary ACE phenotyping is a promising new approach with potential clinical significance to advance precision medicine screening techniques.

8.
Nat Commun ; 14(1): 3737, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349300

RESUMO

Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.


Assuntos
Esquistossomose , Esquistossomicidas , Animais , Camundongos , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Praziquantel/farmacologia , Schistosoma , NADH NADPH Oxirredutases/farmacologia , NADH NADPH Oxirredutases/uso terapêutico , Schistosoma mansoni
9.
Antimicrob Agents Chemother ; 56(12): 6109-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22948883

RESUMO

With 2 to 3% of the worldwide population chronically infected, hepatitis C virus (HCV) infection continues to be a major health care burden. Unfortunately, current interferon-based treatment options are not effective in all patients and are associated with significant side effects. Consequently, there is an ongoing need to identify and develop new anti-HCV therapies. Toward this goal, we previously developed a cell-based HCV infection assay for antiviral compound screening based on a low-multiplicity-of-infection approach that uniquely allows for the identification of antiviral compounds that target cell culture-derived HCV (HCVcc) at any step of the viral infection cycle. Using this assay, here we report the screening of the NCI Diversity Set II library, containing 1,974 synthesized chemical compounds, and the identification of compounds with specific anti-HCV activity. In combination with toxicity counterscreening, we identified 30 hits from the compound library, 13 of which showed reproducible and dose-dependent inhibition of HCV with mean therapeutic indices (50% cytotoxic concentration [CC(50)]/50% effective concentration [EC(50)]) of greater than 6. Using HCV pseudotype and replicon systems of multiple HCV genotypes, as well as infectious HCVcc-based assembly and secretion analysis, we determined that different compounds within this group of candidate inhibitors target different steps of viral infection. The compounds identified not only will serve as biological probes to study and further dissect the biology of viral infection but also should facilitate the development of new anti-HCV therapeutic treatments.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Relação Dose-Resposta a Droga , Transferência Ressonante de Energia de Fluorescência , Hepatite C/virologia , Ensaios de Triagem em Larga Escala , Humanos , Indicadores e Reagentes , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Retroviridae/genética , Infecções por Retroviridae/genética , Infecções por Retroviridae/virologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 22(15): 5025-30, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22771007

RESUMO

The design, modeling, synthesis, biological evaluation of a novel series of photoreactive benzamide probes for class I HDAC isoforms is reported. The probes are potent and selective for HDAC1 and 2 and are efficient in crosslinking to HDAC2 as demonstrated by photolabeling experiments. The probes exhibit a time-dependent inhibition of class I HDACs. The inhibitory activities of the probes were influenced by the positioning of the aryl and alkyl azido groups necessary for photocrosslinking and attachment of the biotin tag. The probes inhibited the deacetylation of H4 in MDA-MB-231 cell line, indicating that they are cell permeable and target the nuclear HDACs.


Assuntos
Marcadores de Afinidade/química , Benzamidas/química , Desenho de Fármacos , Histona Desacetilase 2/química , Inibidores de Histona Desacetilases/síntese química , Modelos Moleculares , Biotina/química , Domínio Catalítico , Linhagem Celular Tumoral , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
11.
Bioorg Med Chem Lett ; 22(21): 6621-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010266

RESUMO

A novel series of HDAC8 inhibitors without a zinc-chelating hydroxamic acid moiety is reported. Photoaffinity labeling and molecular modeling studies suggest that these ligands are likely to bind in an 'upside-down' fashion in a secondary binding site proximal to the main catalytic site. The most potent ligand in the series exhibits an IC(50) of 28 µM for HDAC8 and is found to inhibit the deacetylation of H4 but not α-tubulin in SH-SY5Y cell line.


Assuntos
Quelantes , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/metabolismo , Quelantes/farmacologia , Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Concentração Inibidora 50 , Ligantes , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Zinco/química
12.
Tetrahedron ; 68(35): 7056-7062, 2012 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-22844160

RESUMO

A one-pot tandem direct reductive amination of aldehydes with primary amines resulting in N-Boc secondary amines using a (Boc)(2)O/sodium triacetoxyborohydride (STAB) system is reported. The tandem procedure is efficient, selective, and versatile, giving excellent yields of N-Boc protected secondary amines even in those cases where the products are prone to intramolecular lactamization.

13.
ACS Infect Dis ; 7(7): 1932-1944, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33950676

RESUMO

Fragment screening is a powerful drug discovery approach particularly useful for enzymes difficult to inhibit selectively, such as the thiol/selenol-dependent thioredoxin reductases (TrxRs), which are essential and druggable in several infectious diseases. Several known inhibitors are reactive electrophiles targeting the selenocysteine-containing C-terminus and thus often suffering from off-target reactivity in vivo. The lack of structural information on the interaction modalities of the C-terminus-targeting inhibitors, due to the high mobility of this domain and the lack of alternative druggable sites, prevents the development of selective inhibitors for TrxRs. In this work, fragments selected from actives identified in a large screen carried out against Thioredoxin Glutathione Reductase from Schistosoma mansoni (SmTGR) were probed by X-ray crystallography. SmTGR is one of the most promising drug targets for schistosomiasis, a devastating, neglected disease. Utilizing a multicrystal method to analyze electron density maps, structural analysis, and functional studies, three binding sites were characterized in SmTGR: two sites are close to or partially superposable with the NADPH binding site, while the third one is found between two symmetry related SmTGR subunits of the crystal lattice. Surprisingly, one compound bound to this latter site stabilizes, through allosteric effects mediated by the so-called guiding bar residues, the crucial redox active C-terminus of SmTGR, making it finally visible at high resolution. These results further promote fragments as small molecule probes for investigating functional aspects of the target protein, exemplified by the allosteric effect on the C-terminus, and providing fundamental chemical information exploitable in drug discovery.


Assuntos
Antiparasitários/química , Schistosoma mansoni/efeitos dos fármacos , Animais , Complexos Multienzimáticos , NADH NADPH Oxirredutases/genética
14.
Elife ; 102021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856345

RESUMO

Migraine is the sixth most prevalent disease worldwide but the mechanisms that underlie migraine chronicity are poorly understood. Cytoskeletal flexibility is fundamental to neuronal-plasticity and is dependent on dynamic microtubules. Histone-deacetylase-6 (HDAC6) decreases microtubule dynamics by deacetylating its primary substrate, α-tubulin. We use validated mouse models of migraine to show that HDAC6-inhibition is a promising migraine treatment and reveal an undiscovered cytoarchitectural basis for migraine chronicity. The human migraine trigger, nitroglycerin, produced chronic migraine-associated pain and decreased neurite growth in headache-processing regions, which were reversed by HDAC6 inhibition. Cortical spreading depression (CSD), a physiological correlate of migraine aura, also decreased cortical neurite growth, while HDAC6-inhibitor restored neuronal complexity and decreased CSD. Importantly, a calcitonin gene-related peptide receptor antagonist also restored blunted neuronal complexity induced by nitroglycerin. Our results demonstrate that disruptions in neuronal cytoarchitecture are a feature of chronic migraine, and effective migraine therapies might include agents that restore microtubule/neuronal plasticity.


Migraines are a common brain disorder that affects 14% of the world's population. For many people the main symptom of a migraine is a painful headache, often on one side of the head. Other symptoms include increased sensitivity to light or sound, disturbed vision, and feeling sick. These sensory disturbances are called aura and they often occur before the headache begins. One particularly debilitating subset of migraines are chronic migraines, in which patients experience more than 15 headache days per month. Migraine therapies are often only partially effective or poorly tolerated, making it important to develop new drugs for this condition, but unfortunately, little is known about the molecular causes of migraines. To bridge this gap, Bertels et al. used two different approaches to cause migraine-like symptoms in mice. One approach consisted on giving mice nitroglycerin, which dilates blood vessels, produces hypersensitivity to touch, and causes photophobia in both humans and mice. In the second approach, mice underwent surgery and potassium chloride was applied onto the dura, a thick membrane that surrounds the brain. This produces cortical spreading depression, an event that is linked to migraine auras and involves a wave of electric changes in brain cells that slowly propagates across the brain, silencing brain electrical activity for several minutes. Using these approaches, Bertels et al. studied whether causing chronic migraine-like symptoms in mice is associated with changes in the structures of neurons, focusing on the effects of migraines on microtubules. Microtubules are cylindrical protein structures formed by the assembly of smaller protein units. In most cells, microtubules assemble and disassemble depending on what the cell needs. Neurons need stable microtubules to establish connections with other neurons. The experiments showed that provoking chronic migraines in mice led to a reduction in the numbers of connections between different neurons. Additionally, Bertels et al. found that inhibiting HDAC6 (a protein that destabilizes microtubules) reverses the structural changes in neurons caused by migraines and decreases migraine symptoms. The same effects are seen when a known migraine treatment strategy, known as CGRP receptor blockade, is applied. These results suggest that chronic migraines may involve decreased neural complexity, and that the restoration of this complexity by HDAC6 inhibitors could be a potential therapeutic strategy for migraine.


Assuntos
Encéfalo/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Microtúbulos/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Desacetilase 6 de Histona/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microtúbulos/enzimologia , Microtúbulos/patologia , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/enzimologia , Transtornos de Enxaqueca/fisiopatologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Nitroglicerina , Percepção da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
15.
Protein Sci ; 30(8): 1577-1593, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33931897

RESUMO

Angiotensin I-converting enzyme (ACE, CD143) plays a crucial role in blood pressure regulation, vascular remodeling, and immunity. A wide spectrum of mAbs to different epitopes on the N and C domains of human ACE have been generated and used to study different aspects of ACE biology, including establishing a novel approach-conformational fingerprinting. Here we characterized a novel set of 14 mAbs, developed against human seminal fluid ACE. The epitopes for these novel mAbs were defined using recombinant ACE constructs with truncated N and C domains, species cross-reactivity, ACE mutagenesis, and competition with the previously mapped anti-ACE mAbs. Nine mAbs recognized regions on the N domain, and 5 mAbs-on the C domain of ACE. The epitopes for most of these novel mAbs partially overlap with epitopes mapped onto ACE by the previously generated mAbs, whereas mAb 8H1 recognized yet unmapped region on the C domain where three ACE mutations associated with Alzheimer's disease are localized and is a marker for ACE mutation T877M. mAb 2H4 could be considered as a specific marker for ACE in dendritic cells. This novel set of mAbs can identify even subtle changes in human ACE conformation caused by tissue-specific glycosylation of ACE or mutations, and can detect human somatic and testicular ACE in biological fluids and tissues. Furthermore, the high reactivity of these novel mAbs provides an opportunity to study changes in the pattern of ACE expression or glycosylation in different tissues, cells, and diseases, such as sarcoidosis and Alzheimer's disease.


Assuntos
Anticorpos Monoclonais , Mapeamento de Epitopos/métodos , Peptidil Dipeptidase A , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Epitopos/genética , Glicosilação , Humanos , Mutação , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Domínios Proteicos
16.
Transl Res ; 230: 5-20, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32726712

RESUMO

An elevated blood angiotensin I-converting enzyme (ACE) supports diagnosis of sarcoidosis and Gaucher disease. However, some ACE mutations increase ACE shedding, and patients with these mutations are therefore at risk of being incorrectly diagnosed with sarcoidosis because of elevated serum ACE levels. We applied a novel approach called "ACE phenotyping" to identify possible ACE mutations in 3 pulmonary clinic patients that had suspected sarcoidosis based on elevated blood ACE levels. Conformational fingerprinting of ACE indicated that these mutations may be localized in the stalk region of the protein and these were confirmed by whole exome sequencing. Index patient 1 (IP1) had a mutation (P1199L) that had been previously identified, while the other 2 patients had novel ACE mutations. IP2 had 2 mutations, T887M and N1196K (eliminating a putative glycosylation site), while IP3 had a stop codon mutation Q1124X (eliminating the transmembrane anchor). We also performed a comprehensive analysis of the existing database of all ACE mutations to estimate the proportion of mutations increasing ACE shedding. The frequency of ACE mutations resulting in increased blood ACE levels may be much higher than previously estimated. ACE phenotyping, together with whole exome sequencing, is a diagnostic approach that could prevent unnecessary invasive and/or costly diagnostic procedures, or potentially harmful treatment for patients misdiagnosed on the basis of elevated blood ACE levels.


Assuntos
Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Sarcoidose/sangue , Sarcoidose/diagnóstico , Idoso , Biomarcadores/sangue , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mapeamento de Peptídeos , Ligação Proteica , Conformação Proteica
17.
Free Radic Biol Med ; 147: 200-211, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870799

RESUMO

Selective suicide inhibitors represent a seductively attractive approach for inactivation of therapeutically relevant enzymes since they are generally devoid of off-target toxicity in vivo. While most suicide inhibitors are converted to reactive species at enzyme active sites, theoretically bioactivation can also occur in ectopic (secondary) sites that have no known function. Here, we report an example of such an "ectopic suicide inhibition", an unprecedented bioactivation mechanism of a suicide inhibitor carried out by a non-catalytic site of thioredoxin glutathione reductase (TGR). TGR is a promising drug target to treat schistosomiasis, a devastating human parasitic disease. Utilizing hits selected from a high throughput screening campaign, time-resolved X-ray crystallography, molecular dynamics, mass spectrometry, molecular modeling, protein mutagenesis and functional studies, we find that 2-naphtholmethylamino derivatives bound to this novel ectopic site of Schistosoma mansoni (Sm)TGR are transformed to covalent modifiers and react with its mobile selenocysteine-containing C-terminal arm. In particular, one 2-naphtholmethylamino compound is able to specifically induce the pro-oxidant activity in the inhibited enzyme. Since some 2-naphtholmethylamino analogues show worm killing activity and the ectopic site is not conserved in human orthologues, a general approach to development of novel and selective anti-parasitic therapeutics against schistosoma is proposed.


Assuntos
Complexos Multienzimáticos , NADH NADPH Oxirredutases , Animais , Cristalografia por Raios X , Glutationa Redutase , Humanos , NADH NADPH Oxirredutases/genética , Schistosoma mansoni , Tiorredoxina Dissulfeto Redutase
18.
ACS Infect Dis ; 6(3): 393-405, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31939288

RESUMO

Schistosomiasis is a widespread human parasitic disease currently affecting over 200 million people. Chemotherapy for schistosomiasis relies exclusively on praziquantel. Although significant advances have been made in recent years to reduce the incidence and intensity of schistosome infections, these gains will be at risk should drug-resistant parasites evolve. Thioredoxin glutathione reductase (TGR) is a selenoprotein of the parasite essential for the survival of schistosomes in the mammalian host. Several high-throughput screening campaigns have identified inhibitors of Schistosoma mansoni TGR. Follow up analyses of select active compounds form the basis of the present study. We identified eight compounds effective against ex vivo worms. Compounds 1-5 are active against all major species and development stages. The ability of these compounds to target immature worms is especially critical because praziquantel is poorly active against this stage. Compounds 1-5, 7, and 8 displayed schistosomicidal activity even after only 1 h incubation with the worms. Compounds 1-4 meet or exceed standards set by the World Health Organization for leads for schistosomiasis therapy activity. The mechanism of TGR inhibition was studied further with wild-type and mutant TGR proteins. Compounds 4-6 were found to induce an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in TGR, leading to the production of superoxide and hydrogen peroxide. Collectively, this effort has identified several active compound series that may serve as the basis for the development of new schistosomicidal compounds.


Assuntos
Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Animais , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Camundongos , Complexos Multienzimáticos/genética , NADH NADPH Oxirredutases/genética , NADP/metabolismo , Oxirredução/efeitos dos fármacos
19.
Bioorg Med Chem Lett ; 19(1): 264-74, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19013792

RESUMO

A series of transition state analogues of beta-secretases 1 and 2 (BACE1, 2) inhibitors containing fused-ring or biaryl moieties were designed computationally to probe the S2 pocket, synthesized, and tested for BACE1 and BACE2 inhibitory activity. It has been shown that unlike the biaryl analogs, the fused-ring moiety is successfully accommodated in the BACE1 binding site resulting in the ligands with excellent inhibitory activity. Ligand 5b reduced 65% of Abeta40 production in N2a cells stably transfected with Swedish human APP.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Modelos Moleculares , Inibidores de Proteases/síntese química , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/genética , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Desenho de Fármacos , Humanos , Ligantes , Inibidores de Proteases/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA