Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Math Biol ; 83(3): 29, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34427771

RESUMO

Motivated by experimental observations in 3D/organoid cultures derived from glioblastoma, we propose a novel mechano-transduction mechanism where the introduction of a chemotherapeutic treatment induces mechanical changes at the cell level. We analyse the influence of these individual mechanical changes on the properties of the aggregates obtained at the population level. We employ a nonlinear volume-filling chemotactic system of partial differential equations, where the elastic properties of the cells are taken into account through the so-called squeezing probability, which depends on the concentration of the treatment in the extracellular microenvironment. We explore two scenarios for the effect of the treatment: first, we suppose that the treatment acts only on the mechanical properties of the cells and, in the second one, we assume it also prevents cell proliferation. We perform a linear stability analysis which enables us to identify the ability of the system to create patterns and fully characterize their size. Moreover, we provide numerical simulations in 1D and 2D that illustrate the shrinking of the aggregates due to the presence of the treatment.


Assuntos
Quimiotaxia , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
2.
J Math Biol ; 76(1-2): 205-234, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28573465

RESUMO

We investigate the large time behavior of an agent based model describing tumor growth. The microscopic model combines short-range repulsion and cell division. As the number of cells increases exponentially in time, the microscopic model is challenging in terms of computational time. To overcome this problem, we aim at deriving the associated macroscopic dynamics leading here to a porous media type equation. As we are interested in the long time behavior of the dynamics, the macroscopic equation obtained through usual derivation method fails at providing the correct qualitative behavior (e.g. stationary states differ from the microscopic dynamics). We propose a modified version of the macroscopic equation introducing a density threshold for the repulsion. We numerically validate the new formulation by comparing the solutions of the micro- and macro- dynamics. Moreover, we study the asymptotic behavior of the dynamics as the repulsion between cells becomes singular (leading to non-overlapping constraints in the microscopic model). We manage to show formally that such asymptotic limit leads to a Hele-Shaw type problem for the macroscopic dynamics. We compare the micro- and macro- dynamics in this asymptotic limit using explicit solutions of the Hele-Shaw problem (e.g. radially symmetric configuration). The numerical simulations reveal an excellent agreement between the two descriptions, validating the formal derivation of the macroscopic model. The macroscopic model derived in this paper therefore enables to overcome the problem of large computational time raised by the microscopic model, but stays closely linked to the microscopic dynamics.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Animais , Fenômenos Biomecânicos , Contagem de Células , Divisão Celular , Proliferação de Células , Biologia Computacional , Simulação por Computador , Humanos , Conceitos Matemáticos , Neoplasias/fisiopatologia , Análise de Sistemas , Microambiente Tumoral
3.
iScience ; 27(7): 110197, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39021793

RESUMO

Axolotls are uniquely able to completely regenerate the spinal cord after amputation. The underlying governing mechanisms of this regenerative response have not yet been fully elucidated. We previously found that spinal cord regeneration is mainly driven by cell-cycle acceleration of ependymal cells, recruited by a hypothetical signal propagating from the injury. However, the nature of the signal and its propagation remain unknown. In this theoretical study, we investigated whether the regeneration-inducing signal can follow a reaction-diffusion process. We developed a computational model, validated it with experimental data, and showed that the signal dynamics can be understood in terms of reaction-diffusion mechanism. By developing a theory of the regenerating outgrowth in the limit of fast reaction-diffusion, we demonstrate that control of regenerative response solely relies on cell-to-signal sensitivity and the signal reaction-diffusion characteristic length. This study lays foundations for further identification of the signal controlling regeneration of the spinal cord.

4.
R Soc Open Sci ; 11(1): 231456, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298399

RESUMO

The extracellular-matrix (ECM) is a complex interconnected three-dimensional network that provides structural support for the cells and tissues and defines organ architecture as key for their healthy functioning. However, the intimate mechanisms by which ECM acquire their three-dimensional architecture are still largely unknown. In this paper, we study this question by means of a simple three-dimensional individual based model of interacting fibres able to spontaneously crosslink or unlink to each other and align at the crosslinks. We show that such systems are able to spontaneously generate different types of architectures. We provide a thorough analysis of the emerging structures by an exhaustive parametric analysis and the use of appropriate visualization tools and quantifiers in three dimensions. The most striking result is that the emergence of ordered structures can be fully explained by a single emerging variable: the number of links per fibre in the network. If validated on real tissues, this simple variable could become an important putative target to control and predict the structuring of biological tissues, to suggest possible new therapeutic strategies to restore tissue functions after disruption, and to help in the development of collagen-based scaffolds for tissue engineering. Moreover, the model reveals that the emergence of architecture is a spatially homogeneous process following a unique evolutionary path, and highlights the essential role of dynamical crosslinking in tissue structuring.

5.
R Soc Open Sci ; 9(12): 220791, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533200

RESUMO

We investigate the collective motion of self-propelled agents in an environment filled with obstacles that are tethered to fixed positions via springs. The active particles are able to modify the environment by moving the obstacles through repulsion forces. This creates feedback interactions between the particles and the obstacles from which a breadth of patterns emerges (trails, band, clusters, honey-comb structures, etc.). We will focus on a discrete model first introduced in Aceves-Sanchez P et al. (2020, Bull. Math. Biol. 82, 125 (doi:10.1007/s11538-020-00805-z)), and derived into a continuum PDE model. As a first major novelty, we perform an in-depth investigation of pattern formation of the discrete and continuum models in two dimensions: we provide phase-diagrams and determine the key mechanisms for bifurcations to happen using linear stability analysis. As a result, we discover that the agent-agent repulsion, the agent-obstacle repulsion and the obstacle's spring stiffness are the key forces in the appearance of patterns, while alignment forces between the particles play a secondary role. The second major novelty lies in the development of an innovative methodology to compare discrete and continuum models that we apply here to perform an in-depth analysis of the agreement between the discrete and continuum models.

6.
Math Biosci Eng ; 17(6): 6873-6908, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378880

RESUMO

To model the morphogenesis of rod-shaped bacterial micro-colony, several individual-based models have been proposed in the biophysical literature. When studying the shape of micro-colonies, most models present interaction forces such as attraction or filial link. In this article, we propose a model where the bacteria interact only through non-overlapping constraints. We consider the asymmetry of the bacteria, and its influence on the friction with the substrate. Besides, we consider asymmetry in the mass distribution of the bacteria along their length. These two new modelling assumptions allow us to retrieve mechanical behaviours of micro-colony growth without the need of interaction such as attraction. We compare our model to various sets of experiments, discuss our results, and propose several quantifiers to compare model to data in a systematic way.


Assuntos
Bactérias , Modelos Biológicos , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA