RESUMO
Human activities such as agriculturalization and domestication have led to the emergence of many new pathogens via host-switching events between humans, domesticated and wild animals. Staphylococcus aureus is a multi-host opportunistic pathogen with a global healthcare and economic burden. Recently, it was discovered that laboratory and wild rodents can be colonised and infected with S. aureus, but the origins and zoonotic potential of rodent S. aureus is unknown. In order to trace their evolutionary history, we employed a dataset of 1249 S. aureus genome sequences including 393 of isolates from rodents and other small mammals (including newly determined sequences for 305 isolates from 7 countries). Among laboratory mouse populations, we identified multiple widespread rodent-specific S. aureus clones that likely originated in humans. Phylogeographic analysis of the most common murine lineage CC88 suggests that it emerged in the 1980s in laboratory mouse facilities most likely in North America, from where it spread to institutions around the world, via the distribution of mice for research. In contrast, wild rodents (mice, voles, squirrels) were colonized with a unique complement of S. aureus lineages that are widely disseminated across Europe. In order to investigate the molecular basis for S. aureus adaptation to rodent hosts, genome-wide association analysis was carried out revealing a unique complement of bacteriophages associated with a rodent host ecology. Of note, we identified novel prophages and pathogenicity islands in rodent-derived S. aureus that conferred the potential for coagulation of rodent plasma, a key phenotype of abscess formation and persistence. Our findings highlight the remarkable capacity of S. aureus to expand into new host populations, driven by the acquisition of genes promoting survival in new host-species.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Staphylococcus aureus/genética , Staphylococcus aureus/virologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Camundongos , Roedores/microbiologia , Roedores/virologia , Bacteriófagos/genética , Humanos , Filogenia , Genoma Bacteriano , Fagos de Staphylococcus/genéticaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Since 1814, when rubella was first described, the origins of the disease and its causative agent, rubella virus (Matonaviridae: Rubivirus), have remained unclear1. Here we describe ruhugu virus and rustrela virus in Africa and Europe, respectively, which are, to our knowledge, the first known relatives of rubella virus. Ruhugu virus, which is the closest relative of rubella virus, was found in apparently healthy cyclops leaf-nosed bats (Hipposideros cyclops) in Uganda. Rustrela virus, which is an outgroup to the clade that comprises rubella and ruhugu viruses, was found in acutely encephalitic placental and marsupial animals at a zoo in Germany and in wild yellow-necked field mice (Apodemus flavicollis) at and near the zoo. Ruhugu and rustrela viruses share an identical genomic architecture with rubella virus2,3. The amino acid sequences of four putative B cell epitopes in the fusion (E1) protein of the rubella, ruhugu and rustrela viruses and two putative T cell epitopes in the capsid protein of the rubella and ruhugu viruses are moderately to highly conserved4-6. Modelling of E1 homotrimers in the post-fusion state predicts that ruhugu and rubella viruses have a similar capacity for fusion with the host-cell membrane5. Together, these findings show that some members of the family Matonaviridae can cross substantial barriers between host species and that rubella virus probably has a zoonotic origin. Our findings raise concerns about future zoonotic transmission of rubella-like viruses, but will facilitate comparative studies and animal models of rubella and congenital rubella syndrome.
Assuntos
Mamíferos/virologia , Filogenia , Vírus da Rubéola/classificação , Vírus da Rubéola/isolamento & purificação , Sequência de Aminoácidos , Animais , Animais de Zoológico/imunologia , Animais de Zoológico/virologia , Membrana Celular/virologia , Quirópteros/virologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Equidae/imunologia , Equidae/virologia , Evolução Molecular , Feminino , Mapeamento Geográfico , Alemanha , Especificidade de Hospedeiro , Humanos , Masculino , Mamíferos/imunologia , Marsupiais/imunologia , Marsupiais/virologia , Fusão de Membrana , Camundongos , Modelos Animais , Modelos Moleculares , Rubéola (Sarampo Alemão)/congênito , Rubéola (Sarampo Alemão)/virologia , Vírus da Rubéola/química , Vírus da Rubéola/imunologia , Alinhamento de Sequência , Uganda , Proteínas do Envelope Viral/químicaRESUMO
We identified a rustrela virus variant in a wild mountain lion (Puma concolor) in Colorado, USA. The animal had clinical signs and histologic lesions compatible with staggering disease. Considering its wide host range in Europe, rustrela virus should be considered as a cause for neurologic diseases among mammal species in North America.
Assuntos
Puma , Animais , Colorado/epidemiologia , Puma/virologia , Filogenia , Animais Selvagens/virologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/epidemiologiaRESUMO
Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Anticorpos Antivirais , Camundongos Transgênicos , ImunidadeRESUMO
Retrospective investigation of archived tissue samples from 3 lions displaying nonsuppurative meningoencephalitis and vasculitis led to the detection of rustrela virus (RusV). We confirmed RusV antigen and RNA in cortical neurons, axons, astrocytes and Purkinje cells by reverse transcription quantitative PCR, immunohistochemistry, and in situ hybridization.
Assuntos
Leões , Meningoencefalite , Vírus , Animais , Estudos Retrospectivos , Meningoencefalite/diagnóstico , Meningoencefalite/veterinária , Imuno-HistoquímicaRESUMO
We detected a novel poxvirus from a gray seal (Halichoerus grypus) from the North Sea, Germany. The juvenile animal showed pox-like lesions and deteriorating overall health condition and was finally euthanized. Histology, electron microscopy, sequencing, and PCR confirmed a previously undescribed poxvirus of the Chordopoxvirinae subfamily, tentatively named Wadden Sea poxvirus.
Assuntos
Chordopoxvirinae , Poxviridae , Focas Verdadeiras , Animais , Poxviridae/genética , Mar do Norte , Alemanha/epidemiologiaRESUMO
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1 , Influenza Aviária , Perus , Fatores de Virulência , Virulência , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H7N1/genética , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/mortalidade , Influenza Aviária/virologia , Perus/virologia , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/genéticaRESUMO
Marek's disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.
Assuntos
Linfócitos B/virologia , Doença de Marek , Animais , Senescência Celular/fisiologia , Galinhas , Mardivirus , FenótipoRESUMO
A novel ephemerovirus was identified in a Holstein-Friesian cow in the Hefer Valley, Israel, that showed severe and fatal clinical signs resembling an arboviral infection. A sample taken during the acute phase tested negative for important endemic arboviral infectious cattle diseases. However, sequencing from blood revealed the full genome sequence of Hefer Valley virus, which is likely to represent a new species within the genus Ephemerovirus, family Rhabdoviridae. Archived samples from cattle with comparable clinical signs collected in Israel in 2021 and 2022 tested negative for the novel virus, and therefore, the actual distribution of the virus is unknown. As this is a recently identified new viral infection, the viral vector and the prevalence of the virus in the cattle population are still unknown but will be the subject of future investigations.
Assuntos
Ephemerovirus , Feminino , Bovinos , Animais , Israel/epidemiologia , Meio AmbienteRESUMO
The family Matonaviridae comprises enveloped viruses with positive-sense RNA genomes of 9.6-10 kb. The genus Rubivirus includes rubella virus (species Rubivirus rubellae) infecting humans, ruhugu virus (species Rubivirus ruteetense) infecting bats and rustrela virus (species Rubivirus strelense) infecting rodents and zoo animals. Rubella virus is spread via droplets. Postnatal infection leads to benign disease with rash and fever. Infection of seronegative women with rubella virus during the first trimester of pregnancy will often result in severe foetal malformations, known as congenital rubella syndrome. Vaccines are globally available. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Matonaviridae, which is available at ictv.global/report/matonaviridae.
Assuntos
Vírus de RNA , Vírus , Animais , Feminino , Humanos , Vírus de RNA/genética , Vírus/genética , Vírus da Rubéola/genética , Genoma ViralRESUMO
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.
Assuntos
Vírus da Varíola Bovina , Genoma Viral , Mutação , Animais , Chlorocebus aethiops , Varíola Bovina/genética , Varíola Bovina/metabolismo , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/metabolismo , Vírus da Varíola Bovina/patogenicidade , Humanos , Mutagênese , Ratos , Ratos Wistar , Células VeroRESUMO
We present the complete genome sequences of Caribbean watersnake bornavirus (CWBV) and Mexican black-tailed rattlesnake bornavirus (MRBV), which we identified in archived raw transcriptomic read data of a Caribbean watersnake (Tretanorhinus variabilis) and a Mexican black-tailed rattlesnake (Crotalus molossus nigrescens), respectively. The genomes of CWBV and MRBV have a length of about 8,900 nucleotides and comprise the complete coding regions and the untranslated regions. The overall genomic makeup and predicted gene content is typical for members of the genus Orthobornavirus within the family Bornaviridae. Alternative splicing was detected for the L and M genes. Based on a phylogenetic analysis of all viral proteins, we consider both viruses to be members of a single novel species within the genus Orthobornavirus. Both viruses form a distinct outgroup to all currently known orthobornaviruses. Based on the novel virus genomes, we furthermore identified closely related endogenous bornavirus-like nucleoprotein sequences in transcriptomic data of veiled chameleons (Chamaeleo calyptratus) and a common lancehead (Bothrops atrox).
Assuntos
Bornaviridae/classificação , Bornaviridae/isolamento & purificação , Colubridae/virologia , Viperidae/virologia , Sequência de Aminoácidos , Animais , Bornaviridae/genética , Região do Caribe , Crotalus/virologia , Genoma Viral , México , Filogenia , TranscriptomaRESUMO
We present the complete genome sequence of bovine alphaherpesvirus 2 (BoHV-2), a member of the family Herpesviridae, subfamily Alphaherpesvirinae, genus Simplexvirus. BoHV-2 is the causative agent of bovine ulcerative mammillitis (bovine herpes mammillitis) and pseudo-lumpy skin disease. The genomic architecture of BoHV-2 is typical of most simplexvirus genomes and congruent with that of human alphaherpesvirus 1 (HHV-1). The genome comprises a total of 131,245 base pairs and has an overall G+C content of 64.9 mol%. A total of 75 open reading frames are predicted. The gene repertoire of BoHV-2 is analogous to that of HHV-1, although the coding region of US12 is missing. A phylogenetic analysis supported BoHV-2 as a member of the genus Simplexvirus.
Assuntos
DNA Viral/genética , Genoma Viral/genética , Herpesvirus Bovino 2/genética , Animais , Composição de Bases/genética , Bovinos , Doenças dos Bovinos/virologia , Herpesvirus Bovino 1/genética , Fases de Leitura Aberta/genética , FilogeniaRESUMO
In this work, we present a novel scheme for nonlinear hyperspherical estimation using the von Mises-Fisher distribution. Deterministic sample sets with an isotropic layout are exploited for the efficient and informative representation of the underlying distribution in a geometrically adaptive manner. The proposed deterministic sampling approach allows manually configurable sample sizes, considerably enhancing the filtering performance under strong nonlinearity. Furthermore, the progressive paradigm is applied to the fusing of measurements of non-identity models in conjunction with the isotropic sample sets. We evaluate the proposed filtering scheme in a nonlinear spherical tracking scenario based on simulations. Numerical results show the evidently superior performance of the proposed scheme over state-of-the-art von Mises-Fisher filters and the particle filter.
RESUMO
The SE(2) domain can be used to describe the position and orientation of objects in planar scenarios and is inherently nonlinear due to the periodicity of the angle. We present a novel filter that involves splitting up the joint density into a (marginalized) density for the periodic part and a conditional density for the linear part. We subdivide the state space along the periodic dimension and describe each part of the state space using the parameters of a Gaussian and a grid value, which is the function value of the marginalized density for the periodic part at the center of the respective area. By using the grid values as weighting factors for the Gaussians along the linear dimensions, we can approximate functions on the SE(2) domain with correlated position and orientation. Based on this representation, we interweave a grid filter with a Kalman filter to obtain a filter that can take different numbers of parameters and is in the same complexity class as a grid filter for circular domains. We thoroughly compared the filters with other state-of-the-art filters in a simulated tracking scenario. With only little run time, our filter outperformed an unscented Kalman filter for manifolds and a progressive filter based on dual quaternions. Our filter also yielded more accurate results than a particle filter using one million particles while being faster by over an order of magnitude.
RESUMO
The BAF-chromatin remodeling complex, with its mutually exclusive ATPases SMARCA2 and SMARCA4, is essential for the transcriptional activation of numerous genes, including a subset of interferon-stimulated genes (ISGs). Here, we show that C-terminally truncated forms of both SMARCA2 and SMARCA4 accumulate in cells infected with different RNA or DNA viruses. The levels of truncated SMARCA2 or SMARCA4 strongly correlate with the degree of cell damage and death observed after virus infection. The use of a pan-caspase inhibitor and genetically modified cell lines unable to undergo apoptosis revealed that the truncated forms result from the activity of caspases downstream of the activated intrinsic apoptotic pathway. C-terminally cleaved SMARCA2 and SMARCA4 lack potential nuclear localization signals as well as the bromo- and SnAC domain, with the latter two domains believed to be essential for chromatin association and remodeling. Consistent with this belief, C-terminally truncated SMARCA2 was partially relocated to the cytoplasm. However, the remaining nuclear protein was sufficient to induce ISG expression and inhibit the replication of vesicular stomatitis virus and influenza A virus. This suggests that virus-induced apoptosis does not occur at the expense of an intact interferon-mediated antiviral response pathway.IMPORTANCE Efficient induction of interferon-stimulated genes (ISGs) prior to infection is known to effectively convert a cell into an antiviral state, blocking viral replication. Additionally, cells can undergo caspase-mediated apoptosis to control viral infection. Here, we identify SMARCA2 and SMARCA4 to be essential for the efficient induction of ISGs but also to be targeted by cellular caspases downstream of the intrinsic apoptotic pathway. We find that C-terminally cleaved SMARCA2 and SMARCA4 accumulate at late stages of infection, when cell damage already had occurred. Cleavage of the C terminus removes domains important for nuclear localization and chromatin binding of SMARCA2 and SMARCA4. Consequently, the cleaved forms are unable to efficiently accumulate in the cell nucleus. Intriguingly, the remaining nuclear C-terminally truncated SMARCA2 still induced ISG expression, although to lower levels. These data suggest that in virus-infected cells caspase-mediated cell death does not completely inactivate the SMARCA2- and SMARCA4-dependent interferon signaling pathway.
Assuntos
Caspases/metabolismo , DNA Helicases/metabolismo , Vírus de DNA/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Vírus de RNA/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Cromatina , Células HeLa , Humanos , HidróliseRESUMO
A novel avian alphaherpesvirus, preliminarily designated sphenicid alphaherpesvirus 1 (SpAHV-1), has been independently isolated from juvenile Humboldt and African penguins (Spheniscus humboldti and Spheniscus demersus) kept in German zoos suffering from diphtheroid oropharyngitis/laryngotracheitis and necrotizing enteritis (collectively designated as penguin-diphtheria-like disease). High-throughput sequencing was used to determine the complete genome sequences of the first two SpAHV-1 isolates. SpAHV-1 comprises a class D genome with a length of about 164 kbp, a G+C content of 45.6 mol% and encodes 86 predicted ORFs. Taxonomic association of SpAHV-1 to the genus Mardivirus was supported by gene content clustering and phylogenetic analysis of herpesvirus core genes. The presented results imply that SpAHV-1 could be the primary causative agent of penguin-diphtheria-like fatal diseases in banded penguins. These results may serve as a basis for the development of diagnostic tools in order to investigate similar cases of penguin diphtheria in wild and captive penguins.