Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Mater Des ; 2232022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381607

RESUMO

Over the last years, research on the design of dental self-healing polymers has grown dramatically. It is related to the promising potential of maximizing the clinical lifespan of dental restorations that this strategy holds. In this manuscript, the microcapsule-based strategy is innovated by incorporating the high toughness component N,N-Dimethylacrylamide (DMAM) into the healing agent systems and analyzing in-depth the change in crack propagation behavior induced by the addition of microcapsules into the highly crosslinked polymeric network. In general, the addition of the hydrophilic and high vapor pressure DMAM into the healing agent systems imposed a challenge for the microencapsulation, which highlighted the importance of tailoring the properties of the capsules' shells according to the core composition. The addition of DMAM as cushioning agent proved to be a successful strategy since it resulted in increased G'/G" crossover time from 0.06 (control) to 0.57 s and decreased storage modulus from 8.0 (control) to 0.5GPa. In addition, the incorporation of microcapsules within the polymerized networks provided obstacles to crack propagation, which translated to an overall reinforcement of the polymeric network, as evidenced by the increase in toughness up to 50 % and energy required to propagate cracks up to 100 % in systems containing DMAM at 20 wt%.

2.
Eur Polym J ; 1302020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405085

RESUMO

OBJECTIVES: The incorporation of thiourethane-based oligomeric additives into resin composite formulations leads to improvement in mechanical properties and reduction in polymerization stress, but may increase viscosity. The objective of this study was to functionalize filler particle surfaces with thiourethane silane molecules and determine the impact of the inorganic filler loading and surface treatment on the behavior of experimental resin composites with systematically-varied organic matrices. METHODS: Thiourethane oligomer was synthesized de novo, and grafted to the surface of 0.7um barium glass. BisGMA and TEGDMA (BT) were combined (at 30:70, 50:50 or 70:30 wt%) to 50 or 75 wt% of methacrylate (MA-Sil - control) or thiourethane-silanized (TU-Sil) particles. Composites were made polymerizable by the addition of 0.2 wt% BAPO and 0.05 wt% BHT was added as inhibitor. A mercury arc lamp (320-500 nm) at 800 mW/cm2 was used for all curing procedures. Kinetics of polymerization was assessed by near-IR spectroscopy in real time. Polymerization stress was determined with a cantilever system in real time (Bioman). Flexural modulus and strength were determined in 3-point bending (25x2x2 mm). Water sorption and solubility and film thickness were tested according to ISO 4049. Polymeric network characteristics were analyzed by dynamic mechanical analysis (DMA). Data was analyzed with two-way ANOVA/Tukey's test (95%). RESULTS: Viscosity increased with the increase in BisGMA and/or filler amounts. Overall, TU-Sil containing composites showed delayed vitrification and higher final DC. Filler concentration did not affect DC neither flexural strength. DC decreased with increasing BisGMA content. Polymerization stress reduced and flexural modulus increased for higher filler content, especially for formulations containing TU-Sil particles. The water stability was positively affected by the increase in amount of BisGMA and inorganic filler particles. In terms of polymeric network, the addition of TU-Sil particles increased the Tg and decreased the E' and cross-link density. CONCLUSIONS: With the exception of flexural modulus, all tested properties were significantly impacted by the matrix viscosity and/or the addition of TU-Sil filler particles. In general, the use of thiourethane oligomers as a silane coupling agent was able to reinforce the materials and reduce the polymerization stress without negatively affecting the viscosity of the system.

3.
J Esthet Restor Dent ; 31(2): 153-159, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30394660

RESUMO

OBJECTIVE: The aim of this study was to evaluate the color parameters and optical properties of resin cements (RCs) formulated with thio-urethanes (TUs). MATERIALS AND METHODS: Six TUs were synthesized by combining thiols (pentaerythritol tetra-3-mercaptopropionate [PETMP] or trimethylol-tris-3-mercaptopropionate [TMP]) with di-functional isocyanates (1,6-Hexanediol-diissocyante [HDDI] [aliphatic-AL] or 1,3-bis(1-isocyanato-1-methylethyl) benzene [BDI] [aromatic-AR] or Dicyclohexylmethane 4,4'-Diisocyanate [HMDI] [cyclic-CC]). TUs (20 wt%) were added to a BisGMA/UDMA/TEGDMA matrix. Filler was introduced at 60 wt%. Fluorescence was evaluated through an UV-light emitting equipment. Coordinates L*, a*, and b* were obtained in the black and white reflectance to evaluate the contrast ratio (CR) and translucency parameter (TP00 ). The coordinates obtained from transmittance were used to evaluate lightness (L*), chroma (C*), color difference (ΔE00 ) after 6 month, and whiteness index for Dentistry (WID ). RESULTS: RCs formulated with TUs presented significantly higher CR, and fluorescence (with T_AR). Significantly lower C*, L*, and TP00 (except for P_AR and T_AL) were also observed in RCs containing TUs. ΔE00 were not significant among the materials. WID was not influenced. CONCLUSION: RCs composed by TU oligomers present higher CR and lower translucency. The material also present higher fluorescence depending on the oligomer used. CLINICAL SIGNIFICANCE: The use of thio-urethanes to formulate resin cements can ensure a luting material with improved potential to mask colored substrates due to the higher contrast ratio and lower translucency obtained. A final higher fluorescence of restoration is also expected with the use of specific oligomer.


Assuntos
Cimentos de Resina , Uretana , Cor , Colorimetria , Resinas Compostas , Módulo de Elasticidade , Teste de Materiais , Estresse Mecânico
4.
Int J Adhes Adhes ; 87: 1-11, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31130758

RESUMO

The aim of this in vitro study was to synthesize three new methacrylate monomers based on the modification of saccharides structures (glucose-Gluc, sucrose-Sucr and chitosan-Chit) with glycidyl methacrylate, and to use them in the composition of dental adhesives. Three methacrylate saccharide monomers were synthesized and characterized by mid-IR, 1H and 13C NMR, antioxidant activity and cytotoxic effect. Monomers included: one monosaccharide - Gluc-MA; one disaccharide - Sucr-MA; and one polysaccharide - Chit-MA. Primers containing HEMA, methacrylate saccharide monomers at concentrations of 0 (control), 1, 2 or 4 wt%, 60 wt% ethanol aqueous solution (pH3.0) and initiator system were formulated. Primers were used in conjunction with a bond step and composite paste to restore caries-free third molars, and dentin bond strength (24 hours and 6 month of storage in water), and antimicrobial activity (Alamar Blue test) were tested. Degree of conversion (DC) and maximum rate of polymerization (Rpmax) of the primers themselves were also analyzed. The mid-IR, 1H and 13C spectrum confirmed the presence of vinyl group on the structure of saccharides. Chit-MA showed low antioxidant activity and did not present a cytotoxic effect. Gluc-MA and Sucr-MA possess antioxidant and cytotoxic activity, concentration dependent. In the presence of methacrylate saccharide monomers, the primers showed DC comparable to the control group, except Gluc-MA4%, Sucr-MA4% and Chit-MA1%, which showed a range of 64.6 from 58.5 %DC. Rpmax was not statistically different for all the groups (p = 0.01). The bond strength of Sucr-MA1% increased from 25.7 (±2.8) to 40.6 (±5.3) MPa after 6 months of storage. All the synthesized monomers showed some antimicrobial activity after polymerization. Gluc-MA and Chit-MA 4% and Sucr-MA 1, 2 and 4% led to decrease bacterial metabolism. Sucr-MA 1% showed better results regarding the decrease in bacterial metabolism and increasing the bond strength after 6 months of storage.

5.
J Esthet Restor Dent ; 29(5): 362-367, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28628735

RESUMO

OBJECTIVE: The aim of this study was to investigate the effect of shade and opacity on the change in light transmission through different thicknesses of a nano-hybrid composite during curing. MATERIALS AND METHODS: Twelve different shades of Venus Diamond (Heraeus Kulzer) were placed in disk shaped molds with thickness of 1, 2, and 3 mm (n = 3 per group) and cured with an LED light-curing unit. Initial, final and average irradiance, and the total amount of energy passing through the specimen were measured using the MARC Resin Calibrator at every 10s for a total of 40s. The translucency parameter and the contrast ratio were obtained using a chromameter. Results were analyzed with ANOVA/Tukey's test (α = 0.05). RESULTS: All shades and all thicknesses (up to 3 mm) experienced an increase in light transmittance during curing. The majority of the increase occurred during the initial 10s exposure, with significant increase occurring from subsequent exposures only in thicker specimens (i.e., 3 mm). The increase in irradiance at the bottom during curing was dependent on shade, with darker shades and greater depths of material showing less increase. CONCLUSIONS: For one specific resin composite formulation, an increase in translucency occurs as cure progresses, and the increase is enhanced for composites with greater lightness and lower contrast ratio. CLINICAL SIGNIFICANCE: Composites demonstrate increased light transmittance as curing progress, which may improve depth of cure. The thicker composite showed the least increase in light transmission within the same shade. The increase in translucency is enhanced for composites with great lightness and lower contrast ratio.


Assuntos
Resinas Compostas/química , Resinas Compostas/efeitos da radiação , Lâmpadas de Polimerização Dentária , Cor , Materiais Dentários/química , Teste de Materiais , Propriedades de Superfície
6.
J Prosthet Dent ; 118(5): 631-636, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28385443

RESUMO

STATEMENT OF PROBLEM: The cementation of ceramic veneers using light-polymerized resin cement is largely dependent on the proper light activation of the cement. Light activation using high irradiance could shorten the time required to lute multiple restorations. PURPOSE: The purpose of this in vitro study was to evaluate the light transmission of dental light-polymerizing units through ceramic cylinders and its effect on the polymerization kinetics of a resin cement. MATERIAL AND METHODS: Ceramic ingots (IPS Empress Esthetic, shade ET1) were sectioned to produce cylinders 0.5, 1.0, and 2.0 mm thick. Two light-emitting diode units were evaluated: SmartLite Focus and Valo Cordless, the latter used in either Standard or Xtra Power (XP) modes. Light transmission (average of irradiance, total energy, and light-emission profile) through the cylinders was measured (n=3). The polymerization kinetics of a resin cement light polymerized through the ceramic was monitored for 5 minutes (n=3). The degree of conversion was measured again after 72 hours. Data were individually analyzed with 2-way ANOVA and the Tukey HSD test (α=.05). RESULTS: Valo at XP presented the highest values of irradiance and SmartLite the lowest, irrespective of the ceramic thickness. Regarding the total energy, XP showed the lowest values. The total energy and irradiance lessened with the increase in ceramic thickness. In general, except for Valo at XP, the ceramic thickness did not affect the degree of conversion. Valo at XP and interposing 2.0 mm ceramic resulted in the lowest values of Rpmax. CONCLUSIONS: The reduction of total energy and irradiance by ceramic interposition had only a slight effect on polymerization kinetics.


Assuntos
Cerâmica/uso terapêutico , Cura Luminosa de Adesivos Dentários/métodos , Cimentos de Resina/uso terapêutico , Humanos , Técnicas In Vitro , Cura Luminosa de Adesivos Dentários/instrumentação , Polimerização/efeitos da radiação
7.
Am J Orthod Dentofacial Orthop ; 151(5): 949-956, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28457273

RESUMO

INTRODUCTION: In this study, we evaluated the caries inhibition and shear bond strength achieved with the addition of the antibacterial monomer [2-(Methacryloyloxy)ethyl] trimethylammonium chloride (MADQUAT) to an adhesive used to bond orthodontic brackets. METHODS: Experimental adhesives were formulated with addition of 0% (control), 5%, or 10% MADQUAT followed by measurement of the degree of conversion. These adhesives were used to lute brackets to the enamel of premolars (n = 30). Biofilm from a microcosm model was cultivated in half of the specimens under cariogenic challenge for 5 days. The brackets were subjected to a shear bond strength test followed by measurement of the internal hardness of the enamel around the brackets to calculate the integrated mineral loss. RESULTS: The addition of MADQUAT slightly increased the degree of conversion. Adhesive containing 10% MADQUAT significantly reduced the integrated mineral loss around the bracket but also resulted in the lowest values of bond strength. No effects on bond strength and integrated mineral loss were observed with the addition of 5% MADQUAT to the adhesive. The cariogenic challenge did not affect the bond strength and the failure mode. CONCLUSIONS: MADQUAT was effective to reduce the integrated mineral loss only when added to the adhesive at a concentration of 10% despite the reduction of bond strength.


Assuntos
Colagem Dentária/métodos , Cárie Dentária/prevenção & controle , Cimentos Dentários/uso terapêutico , Metacrilatos/uso terapêutico , Braquetes Ortodônticos , Antibacterianos/uso terapêutico , Biofilmes/crescimento & desenvolvimento , Colagem Dentária/efeitos adversos , Análise do Estresse Dentário , Humanos , Técnicas In Vitro , Braquetes Ortodônticos/efeitos adversos
8.
Odontology ; 103(2): 160-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24728606

RESUMO

This study evaluated the effect of the combination of two dimethacrylate-based monomers [bisphenol A diglycidyl dimethacrylate (BisGMA) or bisphenol A ethoxylated dimethacrylate (BisEMA)] with diluents either derived from ethylene glycol dimethacrylate (ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate) or 1,10-decanediol dimethacrylate (D3MA) on network characteristics and mechanical properties of neat resin and composite materials. The degree of conversion, maximum rate of polymerization and water sorption/solubility of unfilled resins and the flexural strength and microhardness of composites (after 24 h storage in water and 3 months storage in a 75 vol% ethanol aqueous solution) were evaluated. Data were analyzed with two-way ANOVA and Tukey's test (α = 0.05). The higher conversion and lower water sorption presented by BisEMA co-polymers resulted in greater resistance to degradation in ethanol compared with BisGMA-based materials. In general, conversion and mechanical properties were optimized with the use of long-chain dimethacrylate derivatives of ethylene glycol. D3MA rendered more hydrophobic materials, but with relatively low conversion and mechanical properties.


Assuntos
Bis-Fenol A-Glicidil Metacrilato/química , Resinas Compostas/química , Metacrilatos/química , Materiais Dentários/química , Módulo de Elasticidade , Álcoois Graxos/química , Dureza , Teste de Materiais , Polietilenoglicóis/química , Polimerização , Ácidos Polimetacrílicos/química , Solubilidade , Propriedades de Superfície
9.
J Esthet Restor Dent ; 27 Suppl 1: S49-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25886091

RESUMO

PURPOSE: This study evaluated the applicability of 9,10-phenanthrenequinone (PQ) in experimental dental composites. MATERIALS: Camphorquinone (CQ), PQ, ethyl 4-N,N-dimethylaminobenzoate (EDMAB) and diphenyliodonium salt (DPI) were employed. A mixture of 2,2-bis(4-[2-hydroxy-3-methacryloxypropoxy]phenyl)-propane/triethylene glycol dimethacrylate (60:40%) and silanated glass filler at 60% were used. A two-peak-based light-emitting diode (LED) was used. METHODS: The photoinitiator absorption and the light emission spectra were determined by a Ultraviolet-visible spectroscopy and a spectroradiometer, respectively. Relative photon absorption (RPabs) was calculated. Fourier-transformed infrared spectroscopy analysis was used to determine the degree of conversion (DC). The optical properties were determined with a spectrophotometer. Depth of cure was assessed from adapted International Organization for Standardization (ISO) 4049. Results were analyzed with descriptive analysis, analysis of variance, and Tukey's test (α = 5%). RESULTS: PQ showed higher RPabs than CQ. Regarding the DC, CQ + EDMAB (control), CQ + EDMAB + DPI, PQ + DPI, and PQ + EDMAB + DPI produced statistically similar results. Groups formulated with CQ presented higher depth of cure. Only the group formulated with CQ + EDMAB presented satisfactory color stability (ΔE < 3.3). CONCLUSION: PQ presented higher RPabs than CQ and it was able to produce DC similar to CQ + EDMAB, when used with DPI. However, groups formulated with PQ produced lower depth of cure, greater yellowing, and less color stability than the traditional combination CQ and amine. CLINICAL SIGNIFICANCE: Although research with novel photoinitiator systems should be encouraged, the traditional camphorquinone and amine pair remains as a reliable combination for the formulation of dental composites.


Assuntos
Cor , Resinas Compostas , Fenantrenos/química , Quinonas/química , Terpenos/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704038

RESUMO

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Assuntos
Biofilmes , Cromatografia Gasosa-Espectrometria de Massas , Polissacarídeos Bacterianos , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polissacarídeos Bacterianos/metabolismo , Glicosídeos/metabolismo , Metilação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Polissacarídeos/metabolismo
11.
Dent Mater ; 40(6): 993-1001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729779

RESUMO

OBJECTIVES: Acrylamides were shown to significantly improve bonding stability in adhesive restorations, but the reinforcement mechanism has not been fully elucidated. We tested the hypothesis that hydrogen bonding reinforcement of the collagen network (with secondary or tertiary acrylamides), as well as degree of crosslinking of the polymer network (with di- or tri-functional acrylamides), can be two of the factors at play. METHODS: Two-step total etch adhesives comprising UDMA (60 wt%) and 40 wt% of: TAAEA, TMAAEA (secondary, tertiary tri-acrylamides), BAAP, DEBAAP (secondary, tertiary di-acrylamides) or HEMA (mono-methacrylate - control) were formulated. Simulated composite restorations (n = 5) were tested after cyclic mechanical and biological (S. mutans biofilm) challenges. Gap formation before and after aging was assessed with SEM imaging. Micro-tensile bond strength (µTBS, n = 6) was assessed after seven-day incubation in water or S. mutans-containing culture medium. Collagen reinforcement was assessed with hydroxyproline assay (n = 10) and rheology (n = 3). Data were analyzed with one-way/two-way ANOVA/Tukey's test (alpha=5%). RESULTS: Gap formation increased and bond strength decreased for all monomers after biofilm incubation (p < 0.001). Except for DEBAAP, secondary and tertiary di/tri-acrylamides showed lower occlusal gap width values, but no significant differences overall gap length compared to HEMA. µTBS increased for tri-acrylamides compared with HEMA. Samples treated with multi-acrylamides had lower concentration of hydroxyproline (by-product of collagen degradation) (p < 0.001), except for DEBAAP, which showed values close to HEMA (p > 0.05). Dentin shear modulus increased for all acrylamides after 72 h, especially TMAAEA. SIGNIFICANCE: In general, multi-acrylamides promote collagen reinforcement, leading to reduced gap formation, and stabilize the bond strength under physiological conditions.


Assuntos
Acrilamidas , Colágeno , Colagem Dentária , Teste de Materiais , Resistência à Tração , Colágeno/química , Acrilamidas/química , Metacrilatos/química , Resinas Compostas/química , Reologia , Microscopia Eletrônica de Varredura , Ligação de Hidrogênio , Propriedades de Superfície , Análise do Estresse Dentário , Cimentos de Resina/química , Poliuretanos
12.
ACS Appl Mater Interfaces ; 16(35): 46005-46015, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39178414

RESUMO

Purpose/Aim: Acrylamides are hydrolytically stable at pH lower than 2, and were shown to preserve bonded interface integrity with two-step, total etch adhesives. The objective of this study was to leverage those two characteristics in self-etching primers containing the acidic monomer 10-MDP and test the microtensile bond strength before and after incubation with S. mutans incubation. Materials and Methods: Acidic primers (10 wt % 10-methacryloyloxydecyl dihydrogen phosphate─10-MDP; 45 wt % N,N-diethyl-1,3-bis(acrylamido)propane─DEBAAP, or 2-hydroxyethyl methacrylate─HEMA; 45 wt %, glycerol-dimethacrylate─GDMA) and adhesives (DEBAAP or HEMA/10-MDP/UDMA 45/10/45 wt %) were made polymerizable by the addition of 0.2 wt % camphorquinone, 0.8 wt % ethyl-4-dimethylaminobenzoate, 0.4 wt % diphenyliodonium hexafluorophosphate, and 0.1 wt % butylhydroxytoluene. Nonsolvated materials were characterized for flexural strength (FS), modulus (E), toughness, water sorption/solubility (WS/SL), contact angle, and vinyl conversion (DC). Viscosity was evaluated after adding 20 and 40 vol % ethanol to the primer and adhesive, respectively. The experimental materials or Clearfil SE Bond (CC─commercial control) were used to bond a commercial composite (Filtek Supreme) to the flat surface of human dentin. Microtensile bond strength (MTBS) was tested in 1 mm2 sticks for the 5 primer/bond combinations: CC (Clearfil Bond Primer and Bond), HH (HEMA/HEMA), DD (DEBAAP/DEBAAP), HD (HEMA/DEBAAP), and DH (DEBAAP/HEMA). Prior to testing, sticks were stored in water or biofilm-inducing culture medium with S. mutans for 1 week. Confocal images and FTIR-ATR evaluation evaluated the hybrid layer of the adhesives. Results were analyzed using Student's t-test (WS, SL, DC, contact angle, FS, E, toughness), one-way ANOVA/Tukey's test for viscosity, and two-way ANOVA/Tukey's test for MTBS (95%). Results: HEMA-based materials had lower contact angle (p = 0.004), higher WS (p < 0.001), and similar SL values compared to DEBAAP (p = 0.126). FS (p = 0.171) and E (p = 0.065) dry values were similar, but after one week of water storage, FS/E dropped more significantly for HEMA materials. Dry and wet toughness was greater for DEBAAP (p < 0.001), but it also had the greatest drop (46%). Clearfil bonds had the highest viscosity, followed by DEBAAP and HEMA, respectively (p = 0.002). For the primers, HEMA had the lowest viscosity (p = 0.003). As far as MTBS, all groups tested in water were statistically different when compared with HH (p < 0.001). After storage in biofilm, DH had the highest MTBS value, being statistically different from HH (p = 0.002), CC (p = 0.015), and DD (p = 0.027). Conclusions: The addition of a diacrylamide and its association with HEMA in self-etching adhesive systems provided greater bonding stability after bacterial challenge.


Assuntos
Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Resistência à Tração , Dentina/química , Dentina/microbiologia , Adesivos Dentinários/química , Humanos , Teste de Materiais , Metacrilatos/química , Cimentos Dentários/química , Cimentos de Resina/química
13.
Acta Biomater ; 186: 95-107, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39117115

RESUMO

A goal of regenerative engineering is the rational design of materials to restore the structure-function relationships that drive reparative programs in damaged tissues. Despite the widespread use of extracellular matrices for engineering tissues, their application has been limited by a narrow range of tunable features. The primary objective of this study is to develop a versatile platform for evaluating tissue-specific cellular interactions using Type I collagen scaffolds with highly tunable biophysical properties. The kinetics of collagen fibrillogenesis were modulated through a combination of varied shear rate and pH during neutralization, to achieve a broad range of fibril anisotropy, porosity, diameter, and storage modulus. The role that each of these properties play in guiding muscle, bone, and vascular cell types was comprehensively identified, and informed the in vitro generation of three distinct musculoskeletal engineered constructs. Myogenesis was highly regulated by smaller fibrils and larger storage moduli, endothelial inflammatory phenotype was predominantly guided by fibril anisotropy, and osteogenesis was enhanced by highly porous collagen with larger fibrils. This study introduces a novel approach for dynamically modulating Type I collagen materials and provides a robust platform for investigating cell-material interactions, offering insights for the future rational design of tissue-specific regenerative biomaterials. STATEMENT OF SIGNIFICANCE: The biophysical properties of regenerative materials facilitate key cell-substrate interactions that can guide the morphology, phenotype, and biological response of cells. In this study, we describe the fabrication of an engineered collagen hydrogel that can be modified to exhibit control over a wide range of biophysical features, including fibril organization and size, nanoscale porosity, and mechanics. We identified the unique combination of collagen features that optimally promote regenerative muscle, bone, and vascular cell types while also delineating the properties that hinder these same cellular responses. This study presents a highly accessible method to control the biophysical properties of collagen hydrogels that can be adapted for a broad range of tissue engineering and regenerative applications.


Assuntos
Nanofibras , Osteogênese , Osteogênese/efeitos dos fármacos , Humanos , Nanofibras/química , Animais , Engenharia Tecidual/métodos , Desenvolvimento Muscular , Alicerces Teciduais/química , Colágeno Tipo I/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Colágeno/química
14.
Polymers (Basel) ; 16(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39274043

RESUMO

Dental resin composites are widely used in clinical settings but often face longevity issues due to the development and accumulation of microcracks, which eventually lead to larger cracks and restoration failure. The incorporation of microcapsules into these resins has been explored to introduce self-healing capability, potentially extending the lifespan of the restorations. This study aims to enhance the performance of self-healing dental resins by optimizing the microcapsules-resin matrix physicochemical interactions. Poly(urea-formaldehyde) (PUF) microcapsules were reinforced with melamine and subsequently subjected to surface functionalization with 3-aminopropyltriethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTMS). Additionally, microcapsules were functionalized with a bilayer approach, incorporating tetraethyl orthosilicate (TEOS) with either APTES or MPTMS. X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) confirmed an increased Si:C ratio from 0.006 to 0.165. The functionalization process did not adversely affect the structure of the microcapsules or their healing agent volume. Compared to PUF controls, the functionalized microcapsules demonstrated enhanced healing efficiency, with TEOS/MPTMS-functionalized microcapsules showing the highest performance, showing a toughness recovery of up to 35%. This work introduces a novel approach to functionalization of microcapsules by employing advanced silanizing agents such as APTES and MPTMS, and pioneering bilayer functionalization protocols through their combination with TEOS.

15.
J Adhes Dent ; 15(5): 447-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23593643

RESUMO

PURPOSE: To evaluate the tensile bond strength at repaired interfaces of aged dental composites, either dimethacrylate- or silorane-based, when subjected to different surface treatments. MATERIALS AND METHODS: The composites used were Filtek P60 (methacrylate-based, 3M ESPE) and Filtek P90 (silorane-based, 3M ESPE), of which 50 slabs were stored for 6 months at 37°C. The surface of adhesion was abraded with a 600-grit silicone paper and the slabs repaired with the respective composite, according to the following surface treatment protocols: G1: no treatment; G2: adhesive application; G3: silane + adhesive; G4: sandblasting (Al2O3) + adhesive; G5: sandblasting (Al2O3) + silane + adhesive. After 24-h storage in distilled water at 37°C, tensile bond strength (TBS) was determined in a universal testing machine (Instron 4411) at a crosshead speed of 0.5 mm/min. The original data were submitted to two-way ANOVA and Tukey's test (α = 5%). RESULTS: The methacrylate-based composite presented a statistically significantly higher repair potential than did the silorane-based resin (p = 0.0002). Of the surface treatments for the silorane-based composite, aluminum-oxide air abrasion and adhesive (18.5 ± 3.3MPa) provided higher bond strength than only adhesive application or the control group without surface treatment. For Filtek P60, the control without treatment presented lower repair strength than all other groups with surface treatments, which were statistically similar to each other. The interaction between the factors resin composite and surface treatment was significant (p = 0.002). CONCLUSION: For aged silorane-based materials, repairs were considered successful after sandblasting (Al2O3) and adhesive application. For methacrylate resin, repair was successful with all surface treatments tested.


Assuntos
Resinas Compostas/química , Colagem Dentária , Metacrilatos/química , Resinas de Silorano/química , Óxido de Alumínio/química , Bis-Fenol A-Glicidil Metacrilato/química , Corrosão Dentária/métodos , Análise do Estresse Dentário/instrumentação , Humanos , Teste de Materiais , Poliuretanos/química , Silicones/química , Estresse Mecânico , Propriedades de Superfície , Temperatura , Resistência à Tração , Fatores de Tempo , Água/química
16.
ACS Omega ; 8(10): 9356-9363, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936287

RESUMO

A careful analysis of two (thiol-disulfide exchange) thiol quantification chromophores' behavior (Ellman's reagent and Aldrithiol-4) in nonaqueous solvents is presented. A wide range of kinetic profiles and response factors were measured to exhibit a large variance for nonaqueous systems. We report several robust benchtop and room-temperature methods using different organic solvents compared to aqueous conditions. Validation of analytical analyses in nonaqueous systems and quantification of the cysteine content of ovalbumin are also presented. This work serves as a treatise on the utilization of thiol-disulfide exchange chromophores under nonaqueous conditions for the quantification of thiols.

17.
Braz Oral Res ; 37: e088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672421

RESUMO

This study evaluated physicochemical properties of experimental infiltrants after addition of hydroxyapatite nanoparticles (HAp) or 58S bioactive glass (BAG) and diphenyliodonium hexafluorophosphate (DPI). The resin matrix was composed of TEGDMA/Bis-EMA (3:1), 0.5 mol% CQ, and 1 mol% EDAB. The blends received or not 0.5 mol% DPI and 10% wt BAG or HAp. Icon was used as commercial control. The groups were characterized by XRD, FT-IR spectrometry, and SEM before and after simulated body fluid (SBF) immersion for up to 7 days. Polymerization kinetics (n =3 ), water sorption and solubility (n=10), and viscosity (n = 3) were surveyed. For polymerization kinetics, the samples were polymerized for 5 min and the data were obtained from 40 s and 5 min. Statistical analysis was made using ANOVA and Tukey's test (a = 0.05). After 7 days of SBF immersion, XRD and FT-IR showed that the HAp crystalline phase was present only in the HAp groups. A lower degree of conversion (DC) and polymerization rate were observed for the Icon and BAG groups, whereas HAp showed higher values. For the BAG group, DPI increased polymerization rate and DC in 40 s. After 5 min, all groups presented DC above 80%. In groups with particles, the HAp groups exhibited higher viscosity, whereas DPI groups showed a decrease in viscosity. Icon had the highest water sorption. To conclude, BAG neither improved the physicochemical properties studied, nor did it show bioactive properties. The addition of DPI reduced viscosity caused by particle addition and also attenuated the DC decrease caused by BAG addition. The addition of bioactive particles to infiltrants should be seen with caution because they increase viscosity and may not bring major clinical improvements that justify their use. DPI might be indicated only if any component is added to the infiltrant to act as a compensation mechanism.


Assuntos
Nanopartículas , Cloreto de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Cloreto de Sódio na Dieta , Durapatita
18.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873282

RESUMO

The human microbiome is predominantly composed of facultative and obligate anaerobic bacteria that live in hypoxic/anoxic polymicrobial biofilm communities. Given the oxidative sensitivity of large fractions of the human microbiota, green fluorescent protein (GFP) and related genetically-encoded fluorophores only offer limited utility for live cell imaging due the oxygen requirement for chromophore maturation. Consequently, new fluorescent imaging modalities are needed to study polymicrobial interactions and microbiome-host interactions within anaerobic environments. The fluorescence-activating and absorption shifting tag (FAST) is a rapidly developing genetically-encoded fluorescent imaging technology that exhibits tremendous potential to address this need. In the FAST system, fluorescence only occurs when the FAST protein is complexed with one of a suite of cognate small molecule fluorogens. To expand the utility of FAST imaging, we sought to develop a modular platform (Click-FAST) to democratize fluorogen engineering for personalized use cases. Using Click-FAST, investigators can quickly and affordably sample a vast chemical space of compounds, potentially imparting a broad range of desired functionalities to the parental fluorogen. In this work, we demonstrate the utility of the Click-FAST platform using a novel fluorogen, PLBlaze-alkyne, which incorporates the widely available small molecule ethylvanillin as the hydroxybenzylidine head group. Different azido reagents were clicked onto PLBlaze-alkyne and shown to impart useful characteristics to the fluorogen, such as selective bacterial labeling in mixed populations as well as fluorescent signal enhancement. Conjugation of an 80 Å PEG molecule to PLBlaze-alkyne illustrates the broad size range of functional fluorogen chimeras that can be employed. This PEGylated fluorogen also functions as an exquisitely selective membrane permeability marker capable of outperforming propidium iodide as a fluorescent marker of cell viability.

19.
Dent Mater ; 39(2): 192-203, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641338

RESUMO

Gelatin-methacryloyl hydrogels (GelMA) have demonstrated their utility as scaffolds in a variety of tissue engineering applications. OBJECTIVES: In this study, a highly functionalized GelMA hydrogel was synthesized and assessed for degree of functionalization. As the proposed GelMA hydrogel was coupled to a visible-light photoinitiator, we hypothesized it might serve as base to formulate a model dentin primer for application in restorative dentistry. METHODS: GelMA was mixed with photoinitiator lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), photopolymerized for 0-40 s using a dental light-curing device and tested for extrudability, degree of photo-crosslinking (DPxlink), water sorption/solubility/swelling (WS/SL/SW) and apparent modulus of elasticity (AE). Model dentin primer was prepared by mixing GelMA+LAP with a primer of a commercial three-step etch-and-rinse adhesive. After application of GelMA-based primer to acid-etched dentin, samples were bonded with correspondent adhesive agent, photopolymerized and had their immediate bond strength compared to control samples primed and bonded with the same commercial material. RESULTS: Extrudability of hydrogel was confirmed using a microsyringe to write the acronym "CDMI". DPxlink of GelMA+LAP changed significantly as a function of photopolymerization time (20 s < 30 s ≤ 40 s). WS, SL and SW were significantly reduced in hydrogels polymerized for 30 and 40 s. AE of hydrogels varied significantly as a function of photopolymerization time (20 s < 30 s ≤ 40 s; 20 s ‡ 40 s). Bond strength of dentin primed with GelMA-based primer was lower (∼29.3 MPa) but not significantly of that of control (∼34.6 MPa). CONCLUSIONS: Optimization of a GelMA-based dentin primers can lead to the development of promising biomimetic adhesives for dentin rehabilitation.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/química , Cimentos Dentários , Engenharia Tecidual , Metacrilatos/química , Dentina
20.
J Mech Behav Biomed Mater ; 144: 105928, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302206

RESUMO

OBJECTIVES: To investigate the interrelationships among handling, degree of conversion (DC), mechanical behavior and Ca2+ release of composites containing dicalcium phosphate dihydrate (DCPD, CaHPO4.2H2O), as a function of total inorganic content and DCPD: glass ratio. METHODS: Twenty-one formulations (1 BisGMA: 1 TEGDMA, in mols) with inorganic fractions ranging from zero to 50 vol% and different DCPD: glass ratios were evaluated for viscosity (parallel plate rheometer, n = 3), DC (near-FTIR spectroscopy, n = 3), fracture toughness/K1C (single-edge notched beam, n = 7-11) and 14-day Ca2+ release (inductively coupled plasma optical emission spectroscopy, n = 3). Data were analyzed by ANOVA/Tukey test (except viscosity, where Kruskal-Wallis/Dunn tests were used, α: 0.05). RESULTS: Viscosity and DC increased with DCPD: glass ratio among composites with the same inorganic content (p < 0.001). At inorganic fractions of 40 vol% and 50 vol%, keeping DCPD content at a maximum of 30 vol% did not compromise K1C. Ca2+ release showed an exponential relationship with DCPD mass fraction in the formulation (R2 = 0.986). After 14 days, a maximum of 3.8% of the Ca2+ mass in the specimen was released. CONCLUSION: Formulations containing 30 vol% DCPD and 10-20 vol% glass represent the best compromise between viscosity, K1C and Ca2+ release. Materials with 40 vol% DCPD should not be disregarded, bearing in mind that Ca2+ release will be maximized at the expense of K1C.


Assuntos
Cálcio , Fosfatos , Fosfatos de Cálcio/química , Viscosidade , Teste de Materiais , Resinas Compostas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA