Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(51): 26671-26676, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34424591

RESUMO

Palladium nanoparticles (PdNp) were revealed as an efficient hydrogen isotope exchange catalyst for the deuterium and tritium labeling of benzylic positions of complex molecules. A practical way to obtain small palladium nanoparticles and to apply them as a catalyst for hydrogen isotope exchange (HIE) is presented. Several model compounds and popular bioactive molecules were submitted to HIE reactions catalyzed by the PdNp. Benzylic positions situated far away from heteroatoms were labeled with high isotopic enrichments. The observed non-directed HIE gave rise to regioselectivities complementary to those obtained with other methods, which typically require specific directing groups. For this reason, the successful deuteration of a broad variety of benzylic positions created a helpful tool to produce internal LC-MS standards of complex drugs. Furthermore, this nanocatalyst paved the way for the radiolabeling of drug molecules with high specific activities by using low pressures of tritium gas.

2.
Chemistry ; 26(22): 4988-4996, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31841248

RESUMO

Ruthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D2 or T2 gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification. Moreover, the efficacy of the catalyst permits, even under subatmospheric pressure of T2 gas, the preparation of complex radiolabeled drugs owning high molar activities. From a fundamental point of view, a detailed DFT-based mechanistic study identifying undisclosed key intermediates, allowed a deeper understanding of C-H (and N-H) activation processes occurring at the surface of metallic nanoclusters.


Assuntos
Deutério/química , Compostos Heterocíclicos/química , Hidrogênio/química , Imidazóis/química , Rutênio/química , Catálise
3.
Angew Chem Int Ed Engl ; 58(15): 4891-4895, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768844

RESUMO

A general approach for the efficient hydrogen-isotope exchange of nucleobase derivatives is described. Catalyzed by ruthenium nanoparticles, using mild reaction conditions, and involving either D2 or T2 as isotopic sources, this reaction possesses a wide substrate scope and a high solvent tolerability. This novel method facilitates the access to essential diagnostic tools in drug discovery and development: tritiated pharmaceuticals with high specific activities and deuterated oligonucleotides suitable for use as internal standards during LC-MS quantification.


Assuntos
Medição da Troca de Deutério , Deutério/química , Hidrogênio/química , Oligonucleotídeos/química , Preparações Farmacêuticas/química , Cromatografia Líquida , Espectrometria de Massas
4.
JACS Au ; 2(4): 801-808, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557763

RESUMO

Facilitating access to deuterated and tritiated complex molecules is of paramount importance due to the fundamental role of isotopically labeled compounds in drug discovery and development. Deuterated analogues of drugs are extensively used as internal standards for quantification purposes or as active pharmaceutical ingredients, whereas tritiated drugs are essential for preclinical ADME studies. In this report, we describe the labeling of prevalent substructures in FDA-approved drugs such as azines, indoles, alkylamine moieties, or benzylic carbons by the in situ generation of Rh nanoparticles able to catalyze both C(sp2)-H and C(sp3)-H activation processes. In this easy-to-implement labeling process, Rh nanocatalysts are formed by decomposition of a commercially available rhodium dimer under a deuterium or tritium gas atmosphere (1 bar or less), using the substrate itself as a surface ligand to control the aggregation state of the resulting metallic clusters. It is noteworthy that the size of the nanoparticles observed is surprisingly independent of the substrate used and is homogeneous, as evidenced by transmission electron microscopy experiments. This method has been successfully applied to the one-step synthesis of (1) deuterated pharmaceuticals usable as internal standards for MS quantification and (2) tritiated drug analogues with very high molar activities (up to 113 Ci/mmol).

5.
Nanoscale ; 12(29): 15736-15742, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32677658

RESUMO

With this work, we report the synthesis and full characterization of nickel nanoparticles (NPs) stabilized by N-heterocyclic carbene (NHC) ligands, namely 1,3-bis(cyclohexyl)-1,3-dihydro-2H-imidazol-2-ylidene (ICy) and 1,3-bis(2,4,6-trimethylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene (IMes). Although the resulting NPs have the same size, they display different magnetic properties and different reactivities, which result from ligand effects. In the context of H/D exchange on pharmaceutically relevant heterocycles, Ni@NHC shows a high chemoselectivity, avoiding the formation of undesired reduced side-products and enabling a variety of H/D exchange on nitrogen-containing aromatic compounds. Using 2-phenylpyridine as a model substrate, it was observed that deuteration occurred preferably at the α position of the nitrogen atom, which is the most accessible position for the C-H activation. In addition, Ni@IMes NPs are also able to fully deuterate the ortho positions of the phenyl substituents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA