Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7956): 275-279, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045918

RESUMO

Singlet fission1-13 may boost photovoltaic efficiency14-16 by transforming a singlet exciton into two triplet excitons and thereby doubling the number of excited charge carriers. The primary step of singlet fission is the ultrafast creation of the correlated triplet pair17. Whereas several mechanisms have been proposed to explain this step, none has emerged as a consensus. The challenge lies in tracking the transient excitonic states. Here we use time- and angle-resolved photoemission spectroscopy to observe the primary step of singlet fission in crystalline pentacene. Our results indicate a charge-transfer mediated mechanism with a hybridization of Frenkel and charge-transfer states in the lowest bright singlet exciton. We gained intimate knowledge about the localization and the orbital character of the exciton wave functions recorded in momentum maps. This allowed us to directly compare the localization of singlet and bitriplet excitons and decompose energetically overlapping states on the basis of their orbital character. Orbital- and localization-resolved many-body dynamics promise deep insights into the mechanics governing molecular systems18-20 and topological materials21-23.

2.
J Am Chem Soc ; 145(8): 4438-4449, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795037

RESUMO

Molecular emitters that combine circularly polarized luminescence (CPL) and high radiative rate constants of the triplet exciton decay are highly attractive for electroluminescent devices (OLEDs) or next-generation photonic applications, such as spintronics, quantum computing, cryptography, or sensors. However, the design of such emitters is a major challenge because the criteria for enhancing these two properties are mutually exclusive. In this contribution, we show that enantiomerically pure {Cu(CbzR)[(S/R)-BINAP]} [R = H (1), 3,6-tBu (2)] are efficient thermally activated delayed fluorescence (TADF) emitters with high radiative rate constants of kTADF up to 3.1 × 105 s-1 from 1/3LLCT states according to our temperature-dependent time-resolved luminescence studies. The efficiency of the TADF process and emission wavelengths are highly sensitive to environmental hydrogen bonding of the ligands, which can be disrupted by grinding of the crystalline materials. The origin of this pronounced mechano-stimulus photophysical behavior is a thermal equilibrium between the 1/3LLCT states and a 3LC state of the BINAP ligand, which depends on the relative energetic order of the excited states and is prone to inter-ligand C-H···π interactions. The copper(I) complexes are also efficient CPL emitters displaying exceptional dissymmetry values glum of up to ±0.6 × 10-2 in THF solution and ±2.1 × 10-2 in the solid state. Importantly for application in electroluminescence devices, the C-H···π interactions can also be disrupted by employing sterically bulky matrices. Accordingly, we have investigated various matrix materials for successful implementation of the chiral copper(I) TADF emitters in proof-of-concept CP-OLEDs.

3.
Phys Chem Chem Phys ; 25(43): 29718-29726, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37882732

RESUMO

The surface molecular doping of organic semiconductors can play an important role in the development of organic electronic or optoelectronic devices. Single-crystal rubrene remains a leading molecular candidate for applications in electronics due to its high hole mobility. In parallel, intensive research into the fabrication of flexible organic electronics requires the careful design of functional interfaces to enable optimal device characteristics. To this end, the present work seeks to understand the effect of surface molecular doping on the electronic band structure of rubrene single crystals. Our angle-resolved photoemission measurements reveal that the Fermi level moves in the band gap of rubrene depending on the direction of surface electron-transfer reactions with the molecular dopants, yet the valence band dispersion remains essentially unperturbed. This indicates that surface electron-transfer doping of a molecular single crystal can effectively modify the near-surface charge density, while retaining good charge-carrier mobility.

4.
Nano Lett ; 22(3): 1032-1038, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35001635

RESUMO

Future photonic devices require efficient, multifunctional, electrically driven light sources with directional emission properties and subwavelength dimensions. Electrically driven plasmonic nanoantennas have been demonstrated as enabling technology. Here, we present the concept of a nanoscale organic light-emitting antenna (OLEA) as a color- and directionality-switchable point source. The device consists of laterally arranged electrically contacted gold nanoantennas with their gap filled by the organic semiconductor zinc phthalocyanine (ZnPc). Since ZnPc shows preferred hole conduction in combination with gold, the recombination zone relocates depending on the polarity of the applied voltage and couples selectively to either of the two antennas. Thereby, the emission characteristics of the device also depend on polarity. Contrary to large-area OLEDs where recombination at metal contacts significantly contributes to losses, our ultracompact OLEA structures facilitate efficient radiation into the far-field rendering transparent electrodes obsolete. We envision OLEA structures to serve as wavelength-scale pixels with tunable color and directionality for advanced display applications.

5.
Inorg Chem ; 61(37): 14833-14844, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36069727

RESUMO

Molecular near-IR (NIR) triplet-state emitters are of importance for the development of new, organic-electronics-based telecommunication technologies as optical fibers operating in the corresponding spectral bands allow for data transfer over much longer distances due to the significantly lower attenuation. However, achieving such low-energy triplet excited states with good radiative rate constants is very challenging, and studies regarding the single-photon emission of organometallics in this energy range are scarce. We have prepared a series of trigonal CuI CAAC complexes bearing chelating ligands with O, N, S, and Se donor atoms and studied their photophysical properties in this context. The compounds show weak low-energy absorption in solution between 400 and 500 nm due to mixed Cu → CAAC 1MLCT/LLCT states, resulting in yellow-green to orange appearance, which we have also correlated to the 15N NMR resonances of the π-accepting carbene ligand. In the solid state, phosphorescence from dominant 3(Cu → CAAC) CT states is observed at room temperature. The emission of the complexes is bathochromically shifted in comparison to structurally related linearly coordinated copper(I) CAAC complexes due to structural reorganization in the excited state to a T-shape. For [Cu(dbm)(CAACMe)], the broad phosphorescence with outstanding λmax = 760 nm tailors out to ca. 1100 nm and leads to its proof-of-concept application as a nonclassical single-photon light source, constituting key functional units for the implementation of tap-proof data transfer.

6.
Nano Lett ; 20(9): 6452-6458, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786935

RESUMO

Many nanotechnology materials rely on a hierarchical structure ranging from the nanometer scale to the micrometer scale. Their interplay determines the nanoscale optical coherence length, which plays a key role in energy transport and radiative decay and, thus, the optoelectronic applications. However, it is challenging to detect optical coherence length in multiscale structures with existing methods. Techniques such as atomic force microscopy and transmission electron microscopy are not sensitive to optical coherence length. Linear absorption and fluorescence spectroscopy methods, on the other hand, were generally limited by inhomogeneous broadening, which often obstructs the determination of nanoscale coherence length. Here, we carry out coherent two-dimensional microspectroscopy to obtain a map of the local optical coherence length within a hierarchically structured molecular film. Interestingly, the nanoscale coherence length is found to correlate with microscale topography, suggesting a perspective for controlling structural coherence on molecular length scales by appropriate microscopic growth conditions.

7.
J Am Chem Soc ; 142(19): 8897-8909, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32302135

RESUMO

A series of copper(I) complexes bearing a cyclic (amino)(aryl)carbene (CAArC) ligand with various complex geometries have been investigated in great detail with regard to their structural, electronic, and photophysical properties. Comparison of [CuX(CAArC)] (X = Br (1), Cbz (2), acac (3), Ph2acac (4), Cp (5), and Cp* (6)) with known CuI complexes bearing cyclic (amino)(alkyl), monoamido, or diamido carbenes (CAAC, MAC, or DAC, respectively) as chromophore ligands reveals that the expanded π-system of the CAArC leads to relatively low energy absorption maxima between 350 and 550 nm in THF with high absorption coefficients of 5-15 × 103 M-1 cm-1 for 1-6. Furthermore, 1-5 show intense deep red to near-IR emission involving their triplet excited states in the solid state and in PMMA films with λemmax = 621-784 nm. Linear [Cu(Cbz)(DippCAArC)] (2) has been found to be an exceptional deep red (λmax = 621 nm, ϕ = 0.32, τav = 366 ns) thermally activated delayed fluorescence (TADF) emitter with a radiative rate constant kr of ca. 9 × 105 s-1, exceeding those of commercially employed IrIII- or PtII-based emitters. Time-resolved transient absorption and fluorescence upconversion experiments complemented by quantum chemical calculations employing Kohn-Sham density functional theory and multireference configuration interaction methods as well as temperature-dependent steady-state and time-resolved luminescence studies provide a detailed picture of the excited-state dynamics of 2. To demonstrate the potential applicability of this new class of low-energy emitters in future photonic applications, such as nonclassical light sources for quantum communication or quantum cryptography, we have successfully conducted single-molecule photon-correlation experiments of 2, showing distinct antibunching as required for single-photon emitters.

8.
Chemistry ; 25(68): 15463-15471, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31478580

RESUMO

Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.

9.
Opt Express ; 26(4): 3915-3925, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475248

RESUMO

We have developed coherent two-dimensional (2D) fluorescence micro-spectroscopy which probes the nonlinear optical response at surfaces via fluorescence detection with sub-micron spatial resolution. This enables the investigation of microscopic variations in heterogeneous systems. An LCD-based pulse shaper in 4f geometry is used to create collinear trains of 12-fs visible/NIR laser pulses in the focus of an NA = 1.4 immersion-oil microscope objective. We demonstrate the capabilities of the new method by presenting 2D spectra, analyzed via phase cycling, as a function of position of selected sub-micron regions from a laterally nanostructured polycrystalline thin film of fluorinated zinc phthalocyanine (F16ZnPc).

10.
Opt Express ; 25(6): 6678-6689, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381012

RESUMO

The spatially and spectrally resolved photoluminescence (PL) of the archetypical molecular dye ZnPc in periodically ordered organic-silver nanocavities (NC) is investigated by confocal microscopy. The presented approach of long-range ordered pillar structures prepared by nanosphere lithography not only combines the advantages of nanopatterning and localized surface plasmon resonances (LSPR) to improve the light out-coupling efficiency in metal-organic hybrid assemblies, but allows for distinction between geometrical and plasmonic contributions to the PL enhancement, the latter supported by complementary finite-difference-time-domain (FDTD) simulations. Supplementary time-resolved optical measurements indicate exciton lifetime reduction by at least one order of magnitude to be the main mechanism for PL increase amongst the improvement of geometrical out-coupling.

11.
Chemistry ; 23(9): 2206-2216, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27911043

RESUMO

The members of a series of linear and trigonal copper(I) complexes bearing a cyclic alkyl(amino)carbene (CAAC) ligand show surprising photophysical properties compared to those of the corresponding N-heterocyclic carbene (NHC) complexes. Whereas the linear NHC complexes [CuX(NHC)] are almost non-emissive, [CuX(CAAC)] (X=Cl, Br, I) and [Cu(CAAC)2 ]PF6 show very bright emissions from their triplet excited states in the blue to green region, displaying quantum yields of up to 65 % in the solid state, even though the π-acceptor comprises only the carbene C and N atoms with no other π conjugation. [Cu(CAAC)2 ]PF6 is the fastest CuI -based triplet state emitter characterized to date, not displaying thermally activated delayed fluorescence (TADF), with an intrinsic lifetime of only 10.6 µs, that is, kr =9.4×104  s-1 , competitive with many PtII - and IrIII -based emitters. In order to test the stability of such linear copper CAAC complexes in devices, some of our compounds have been applied in proof-of-principle organic light-emitting diodes (OLEDs). This case study thus demonstrates for the first time the use of CAACs as suitable π-chromophores for CuI -based phosphorescent emitters, and their implementation in OLEDs underlines the general applicability of this class of ligands in materials science.

12.
Phys Chem Chem Phys ; 19(3): 2434-2448, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28058427

RESUMO

Perylene-based compounds are promising materials for opto-electronic thin film devices but despite intense investigations, important details of their electronic structure are still under debate. For perylene-3,4,9,10-tetracarboxylic dianhydrid (PTCDA), the theoretical models predict a different relative energetic order of Frenkel and Charge Transfer (CT) states. Additionally, while one model indicates strong differences between PTCDA on one hand and other perylene-based compounds on the other, recent ab initio computations indicate electronic properties of all perylene-based compounds to resemble each other. Finally, the models disagree about the amount of mixing between CT and Frenkel states. Definitive answers to these questions are difficult because the approaches use various approximations. Up to date, the ab initio based methods employ rather small model systems and neglect environmental effects. In the present work, we improve our former approach by analyzing the effects of the various simplifications. In more detail, we increase the size of the model systems, include environmental effects and investigate the influence of exciton-phonon couplings on the absorption spectrum. The computations for larger aggregates were performed with the ZINDO/S approach, because benchmark computations show that it provides accurate vertical excitation energies for Frenkel, as well as CT states.

13.
Langmuir ; 31(2): 782-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25453192

RESUMO

Anomalous small angle X-ray scattering (ASAXS) has been utilized as a noninvasive, integral tool to access the structural properties of carbon xerogel-manganese oxide electrodes with nanometer resolution. As these electrodes constitute the elementary functional units in supercapacitors and as their microstructure governs the macroscopic electrical performance, it is essential to gain a detailed morphological understanding of the underlying carbon particle scaffold coated with manganese oxide. We demonstrate that, in this regard, ASAXS provides a powerful technique and in combination with a theoretical core-shell model enables a quantitative estimation of the relevant structural parameters. As a result, we determined the thicknesses of the solution deposited MnO2 shells to range between 3 and 26 nm depending on the carbon particle size and thus on their effective surface area. By our core-shell modeling we conclude the revealed manganese oxide coatings on the carbon support to be rather thick, but nevertheless to show a high uniformity in thickness. At 1.8 ± 0.2 to 2.2 ± 0.1 g/cm(3) the related effective MnO2 densities of the shells are about 30% lower than the corresponding bulk density of 3.0 g/cm(3). This mainly originates from a substructure within the shell, whose growth is controlled by a pronounced reduction of the manganese precursor during layer formation. Finally, the presented ASAXS data are complemented by SEM and N2 sorption measurements, proving not only qualitatively the proposed flake-like MnO2 surface morphology but also confirming quantitatively the manganese shell thickness, complementary, on a local scale.

14.
J Am Chem Soc ; 136(6): 2351-62, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24432873

RESUMO

We have synthesized a series of dipolar squaraine dyes that contain dicyanovinyl groups as acceptor and benzannulated five-membered ring heterocycles with alkyl chains of varied length as donor moieties. Based on these squaraines, thin-film transistors (TFT) were fabricated by spin coating and solution shearing. Moreover, with one of these squaraine derivatives vacuum-deposited TFTs were prepared as well. Our detailed studies revealed that the transistor performance of the present series of squaraines is strongly dependent on their structural features as well as on the processing method of thin films. Thus, solution-sheared OTFTs of selenium squaraine bearing dodecyl substituents (denoted as Se-SQ-C12) performed best with a maximum hole mobility of 0.45 cm(2) V(-1) s(-1), which is by far the highest value yet reported for OTFTs based on squaraines. This value was even surpassed by vacuum-deposited thin films of n-butyl-substituted selenium squaraine Se-SQ-C4, the only sublimable compound in this series, exhibiting a record hole mobility of 1.3 cm(2) V(-1) s(-1). Furthermore, we have investigated the morphology of the thin films and the molecular packing of these squaraine dyes by optical spectroscopy, atomic force microscopy, and X-ray diffraction. These studies revealed a relationship between the molecular structure, packing motif, thin-film morphology, and transistor performance of the squaraine dyes. From the supramolecular point of view two packing features discovered in the single crystal structure of Se-SQ-C8 are of particular interest with regard to the structure-functionality relationship: The first is the slipped and antiparallel π-stacking motif which ensures cancellation of the molecules' dipole moments and J-type absorption band formation in thin films. The second is the presence of CN···Se noncovalent bonds which show similarities to the more common halogen-bonding interactions and which interconnect the individual one-dimensional slipped π-stacks, thus leading to two-dimensional percolation pathways along the source-drain direction.

15.
J Am Chem Soc ; 136(26): 9327-37, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24909402

RESUMO

The exciton diffusion length (LD) is a key parameter for the efficiency of organic optoelectronic devices. Its limitation to the nm length scale causes the need of complex bulk-heterojunction solar cells incorporating difficulties in long-term stability and reproducibility. A comprehensive model providing an atomistic understanding of processes that limit exciton trasport is therefore highly desirable and will be proposed here for perylene-based materials. Our model is based on simulations with a hybrid approach which combines high-level ab initio computations for the part of the system directly involved in the described processes with a force field to include environmental effects. The adequacy of the model is shown by detailed comparison with available experimental results. The model indicates that the short exciton diffusion lengths of α-perylene tetracarboxylicdianhydride (PTCDA) are due to ultrafast relaxation processes of the optical excitation via intermolecular motions leading to a state from which further exciton diffusion is hampered. As the efficiency of this mechanism depends strongly on molecular arrangement and environment, the model explains the strong dependence of LD on the morphology of the materials, for example, the differences between α-PTCDA and diindenoperylene. Our findings indicate how relaxation processes can be diminished in perylene-based materials. This model can be generalized to other organic compounds.

16.
J Chem Phys ; 140(11): 114501, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655187

RESUMO

Ultrafast exciton dynamics in free standing 200 nm thin tetracene single crystals were studied at room temperature by femtosecond transient absorption spectroscopy in the visible spectral range. The complex spectrally overlapping transient absorption traces of single crystals were systematically deconvoluted. From this, the ultrafast dynamics of the ground, excited, and transition states were identified including singlet exciton fission into two triplet excitons. Fission is generated through both, direct fission of higher singlet states S(n) on a sub-picosecond timescale, and thermally activated fission of the singlet exciton S1 on a 40 ps timescale. The high energy Davydov component of the S1 exciton is proposed to undergo fission on a sub-picoseconds timescale. At high density of triplet excitons their mutual annihilation (triplet-triplet annihilation) occurs on a <10 ps timescale.

17.
Nature ; 445(7129): 745-8, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17301788

RESUMO

The prospect of using low-temperature processable organic semiconductors to implement transistors, circuits, displays and sensors on arbitrary substrates, such as glass or plastics, offers enormous potential for a wide range of electronic products. Of particular interest are portable devices that can be powered by small batteries or by near-field radio-frequency coupling. The main problem with existing approaches is the large power consumption of conventional organic circuits, which makes battery-powered applications problematic, if not impossible. Here we demonstrate an organic circuit with very low power consumption that uses a self-assembled monolayer gate dielectric and two different air-stable molecular semiconductors (pentacene and hexadecafluorocopperphthalocyanine, F16CuPc). The monolayer dielectric is grown on patterned metal gates at room temperature and is optimized to provide a large gate capacitance and low gate leakage currents. By combining low-voltage p-channel and n-channel organic thin-film transistors in a complementary circuit design, the static currents are reduced to below 100 pA per logic gate. We have fabricated complementary inverters, NAND gates, and ring oscillators that operate with supply voltages between 1.5 and 3 V and have a static power consumption of less than 1 nW per logic gate. These organic circuits are thus well suited for battery-powered systems such as portable display devices and large-surface sensor networks as well as for radio-frequency identification tags with extended operating range.

18.
Mater Horiz ; 10(1): 221-234, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36367085

RESUMO

Multi-molecular excited states accompanied by intra- and inter-molecular geometric relaxation are commonly encountered in optical and electrooptical studies and applications of organic semiconductors as, for example, excimers or charge transfer states. Understanding the dynamics of these states is crucial to improve organic devices such as light emitting diodes and solar cells. Their full microscopic description, however, demands sophisticated tools such as ab initio quantum chemical calculations which come at the expense of high computational costs and are prone to errors by assumptions as well as iterative algorithmic procedures. Hence, the analysis of spectroscopic data is often conducted at a phenomenological level only. Here, we present a toolkit to analyze temperature dependent luminescence data and gain first insights into the relevant microscopic parameters of the molecular system at hand. By means of a Franck-Condon based approach considering a single effective inter-molecular vibrational mode and different potentials for the ground and excited state we are able to explain the luminescence spectra of such multi-molecular states. We demonstrate that by applying certain reasonable simplifications the luminescence of charge transfer states as well as excimers can be satisfactorily reproduced for temperatures ranging from cryogenics to above room temperature. We present a semi-classical and a quantum-mechanical description of our model and, for both cases, demonstrate its applicability by analyzing the temperature dependent luminescence of the amorphous donor-acceptor heterojunction tetraphenyldibenzoperiflanthene:C60 as well as polycrystalline zinc-phthalocyanine to reproduce the luminescence spectra and extract relevant system parameters such as the excimer binding energy.

19.
Nanoscale ; 15(11): 5249-5256, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794456

RESUMO

Stacked organic optoelectronic devices make use of electrode materials with different work functions, leading to efficient large area light emission. In contrast, lateral electrode arrangements offer the possibility to be shaped as resonant optical antennas, radiating light from subwavelength volumes. However, tailoring electronic interface properties of laterally arranged electrodes with nanoscale gaps - to e.g. optimize charge-carrier injection - is rather challenging, yet crucial for further development of highly efficient nanolight sources. Here, we demonstrate site-selective functionalization of laterally arranged micro- and nanoelectrodes by means of different self-assembled monolayers. Upon applying an electric potential across nanoscale gaps, surface-bound molecules are removed selectively from specific electrodes by oxidative desorption. Kelvin-probe force microscopy as well as photoluminescence measurements are employed to verify the success of our approach. Moreover, we obtain asymmetric current-voltage characteristics for metal-organic devices in which just one of the electrodes is coated with 1-octadecanethiol; further demonstrating the potential to tune interface properties of nanoscale objects. Our technique paves the way for laterally arranged optoelectronic devices based on selectively engineered nanoscale interfaces and in principle enables molecular assembly with defined orientation in metallic nano-gaps.

20.
J Comput Chem ; 33(18): 1544-53, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22514040

RESUMO

Aggregates of functionalized polycyclic aromatic molecules like perylene derivatives differ in important optoelectronic properties such as absorption and emission spectra or exciton diffusion lengths. Although those differences are well known, it is not fully understood if they are caused by variations in the geometrical orientation of the molecules within the aggregates, variations in the electronic structures of the dye aggregates or interplay of both. As this knowledge is of interest for the development of materials with optimized functionalities, we investigate this question by comparing the electronic structures of dimer systems of representative perylene-based chromophores. The study comprises dimers of perylene, 3,4,9,10-perylene tetracarboxylic acid bisimide (PBI), 3,4,9,10-perylene tetracarboxylic acid dianhydride (PTCDA), and diindeno perylene (DIP). Potential energy curves (PECs) and characters of those electronic states are investigated which determine the optoelectronic properties. The computations use the spin-component-scaled approximate coupled-cluster second-order method (SCS-CC2), which describes electronic states of predominately neutral excited (NE) and charge transfer (CT) character equally well. Our results show that the characters of the excited states change significantly with the intermolecular orientation and often represent significant mixtures of NE and CT characters. However, PECs and electronic structures of the investigated perylene derivatives are almost independent of the substitution patterns of the perylene core indicating that the observed differences in the optoelectronic properties mainly result from the geometrical structure of the dye aggregate. It also hints at the fact that optical properties can be computed from less-substituted model compounds if a proper aggregate geometry is chosen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA