Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Radioact ; 198: 189-199, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30640033

RESUMO

The spectrum of cosmogenic neutrons at Earth's surface covers a wide energy range, from thermal to several GeV. The flux of secondary neutrons varies with latitude, elevation, solar activity, and nearby material, including ground moisture. We report the results from a campaign to measure count rates in neutron detectors responding to three different energy ranges conducted near the geomagnetic North Pole at CFS Alert, Nunavut, Canada (82.5°N, 62.5°W; vertical geomagnetic cutoff rigidity, RC = 0 GV) in June of 2016. In November 2016, we performed a follow-on measurement campaign in southern Canada at similar RC (1.5 GV) and elevations. We conducted these measurements, at varying elevation and ground moisture content, with unmoderated and moderated 3He detectors for thermal and epithermal-to-MeV sensitivity, and with EJ-299-33 pulse shape discrimination plastic scintillator detectors for fast neutrons. Background gamma rays were monitored with NaI(Tl) detectors. Using these data sets, we compared the measured count rates to a predictive model. This is the first ever data set taken from this location on Earth. We find that for the thermal and epithermal-to-MeV neutron measurements the predictive model and data are in good agreement, except at one location on rock-covered ground near 1 km elevation. The discrepancy at that location may be attributable to ground moisture variability. Other measurements, during this campaign and prior, support the assertion that ground moisture plays a critical role in determining neutron flux.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Regiões Árticas , Canadá , Raios gama , Nêutrons , Atividade Solar
2.
Recent Pat Nanotechnol ; 4(3): 137-49, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20565384

RESUMO

Electrophoretic displays (EPDs) have made their way into consumer products. EPDs enable displays that offer the look and form of a printed page, often called "electronic paper". We will review recent apparatus and method patents for EPD devices and their fabrication. A brief introduction into the basic display operation and history of EPDs is given, while pointing out the technological challenges and difficulties for inventors. Recently, the majority of scientific publications and patenting activity has been directed to micro-segmented EPDs. These devices exhibit high optical reflectance and contrast, wide viewing angle, and high image resolution. Micro-segmented EPDs can also be integrated with flexible transistors technologies into flexible displays. Typical particles size ranges from 200 nm to 2 micrometer. Currently one very active area of patenting is the development of full-color EPDs. We summarize the recent patenting activity for EPDs and provide comments on perceiving factors driving intellectual property protection for EPD technologies.


Assuntos
Eletrônica/instrumentação , Eletrônica/legislação & jurisprudência , Cor , Terminais de Computador/legislação & jurisprudência , Desenho de Equipamento , Tinta , Multimídia , Nanotecnologia/legislação & jurisprudência , Dispositivos Ópticos , Papel , Patentes como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA